Assessing the impacts of invasive non-native African sharptooth catfish Clarias Gariepinus
- Authors: Kadye, Wilbert Takawira
- Date: 2012
- Subjects: Catfishes -- South Africa -- Eastern Cape Biological invasions -- South Africa -- Great Fish River Biological invasions -- South Africa -- Sundays River Clarias gariepinus Freshwater ecology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5227 , http://hdl.handle.net/10962/d1005070
- Description: Invasive species are of particular concern as they have the potential to alter community structure and food web relationships within their invaded habitats. African sharptooth catfish Clarias gariepinus, a generalist predator, was introduced through an inter-basin water transfer scheme into the Great Fish and Sundays Rivers, Eastern Cape, South Africa, where it threatens the native riverine biota. This thesis assessed its impact from a trophic perspective. Patterns in catfish distribution and abundance revealed an upstream to downstream gradient that was associated with spatial distribution of most species within the mainstream, and a mainstream to tributary gradient that was associated with the spatial distribution of native minnows. The catfish was predicted to occur widely within the mainstem habitats and to decrease progressively along the mainstrem to tributary gradient with the physico-chemical environment being a good proxy for predicting both its occurrence and abundance. The results suggest the catfish proliferated within mainstem habitats where invasion resistance was possibly reduced due to alteration of flow. Population dynamics and size structuring of two native cyprinid minnows Pseudobarbus afer and Barbus anoplus, threatened by catfish, were examined within uninvaded headwater streams in relation to their proximate physical habitats. Their habitats were characterised by seasonal variation in physico-chemical conditions and a spatial variation in substrata compositions. No evidence of differences was found between seasons for density and capture probability for either species. The population size and density for P. afer was found to increase with increasing proportion of boulders. In comparison, B. anoplus population size and probability of capture increased with increasing proportion of bedrock and bank vegetation, respectively. Size structuring was explained predominantly by seasonality and habitat variables for P. afer and B. anoplus, respectively. Stable isotope ratios of carbon and nitrogen were used to compare the spatial variation in both the community-wide and catfish-specific niches and to estimate catfish prey sources from different habitats within the invaded systems. Aquatic community and catfish niches were statistically different among localities, suggesting that each locality had a distinct community-wide trophic structure. Dispersion metrics indicated no evidence of differences in the clustering among individuals, but provided evidence of differences in path trajectories for the comparisons of catfish populations that suggested dietary plasticity within different localities. Dietary studies revealed both ontogenetic shift and omnivory that suggested that catfish may exhibit less pronounced top-down effects within its invaded habitats. Manipulative experiments were used to test the response of benthic macroinvertebrates within two rivers that were differentially impacted by catfish as a presstype disturbance. Macroinvertebrates were non-responsive to catfish presence within a system where catfish had previously been established. In contrast, excluding catfish in this system indicated a response that suggested the importance of refuge within invaded habitats and the possible recovery pattern of certain macroinvertebrate taxa. By comparison, introduction of catfish within previously uninvaded localities provided evidence of direct catfish impact through elimination of conspicuous taxa. Acoustic telemetry was used to investigate catfish movement patterns within an invaded lentic habitat and provided evidence that habitat utilisation was non-random. The shallow and structured river mouth habitat, which was most utilised, was probably the most ideal for its breeding and feeding. This inferred potential overlap with native species and suggested the risk of predation and competitive interference. Catfish also exhibited both nocturnal and diurnal activity patterns that were probably related to feeding.
- Full Text:
- Authors: Kadye, Wilbert Takawira
- Date: 2012
- Subjects: Catfishes -- South Africa -- Eastern Cape Biological invasions -- South Africa -- Great Fish River Biological invasions -- South Africa -- Sundays River Clarias gariepinus Freshwater ecology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5227 , http://hdl.handle.net/10962/d1005070
- Description: Invasive species are of particular concern as they have the potential to alter community structure and food web relationships within their invaded habitats. African sharptooth catfish Clarias gariepinus, a generalist predator, was introduced through an inter-basin water transfer scheme into the Great Fish and Sundays Rivers, Eastern Cape, South Africa, where it threatens the native riverine biota. This thesis assessed its impact from a trophic perspective. Patterns in catfish distribution and abundance revealed an upstream to downstream gradient that was associated with spatial distribution of most species within the mainstream, and a mainstream to tributary gradient that was associated with the spatial distribution of native minnows. The catfish was predicted to occur widely within the mainstem habitats and to decrease progressively along the mainstrem to tributary gradient with the physico-chemical environment being a good proxy for predicting both its occurrence and abundance. The results suggest the catfish proliferated within mainstem habitats where invasion resistance was possibly reduced due to alteration of flow. Population dynamics and size structuring of two native cyprinid minnows Pseudobarbus afer and Barbus anoplus, threatened by catfish, were examined within uninvaded headwater streams in relation to their proximate physical habitats. Their habitats were characterised by seasonal variation in physico-chemical conditions and a spatial variation in substrata compositions. No evidence of differences was found between seasons for density and capture probability for either species. The population size and density for P. afer was found to increase with increasing proportion of boulders. In comparison, B. anoplus population size and probability of capture increased with increasing proportion of bedrock and bank vegetation, respectively. Size structuring was explained predominantly by seasonality and habitat variables for P. afer and B. anoplus, respectively. Stable isotope ratios of carbon and nitrogen were used to compare the spatial variation in both the community-wide and catfish-specific niches and to estimate catfish prey sources from different habitats within the invaded systems. Aquatic community and catfish niches were statistically different among localities, suggesting that each locality had a distinct community-wide trophic structure. Dispersion metrics indicated no evidence of differences in the clustering among individuals, but provided evidence of differences in path trajectories for the comparisons of catfish populations that suggested dietary plasticity within different localities. Dietary studies revealed both ontogenetic shift and omnivory that suggested that catfish may exhibit less pronounced top-down effects within its invaded habitats. Manipulative experiments were used to test the response of benthic macroinvertebrates within two rivers that were differentially impacted by catfish as a presstype disturbance. Macroinvertebrates were non-responsive to catfish presence within a system where catfish had previously been established. In contrast, excluding catfish in this system indicated a response that suggested the importance of refuge within invaded habitats and the possible recovery pattern of certain macroinvertebrate taxa. By comparison, introduction of catfish within previously uninvaded localities provided evidence of direct catfish impact through elimination of conspicuous taxa. Acoustic telemetry was used to investigate catfish movement patterns within an invaded lentic habitat and provided evidence that habitat utilisation was non-random. The shallow and structured river mouth habitat, which was most utilised, was probably the most ideal for its breeding and feeding. This inferred potential overlap with native species and suggested the risk of predation and competitive interference. Catfish also exhibited both nocturnal and diurnal activity patterns that were probably related to feeding.
- Full Text:
On the underwater visual census of Western Indian Ocean coral reef fishes
- Authors: Wartenberg, Reece
- Date: 2012
- Subjects: Coral reef fishes -- Africa, Southern , Coral reef fishes -- Indian Ocean , Coral reef fishes -- Behavior , Fish communities -- Africa, Southern , Fish communities -- Indian Ocean , Groundfishes -- Africa, Southern , Groundfishes -- Indian Ocean , Groundfishes -- Behavior
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5308 , http://hdl.handle.net/10962/d1005153 , Coral reef fishes -- Africa, Southern , Coral reef fishes -- Indian Ocean , Coral reef fishes -- Behavior , Fish communities -- Africa, Southern , Fish communities -- Indian Ocean , Groundfishes -- Africa, Southern , Groundfishes -- Indian Ocean , Groundfishes -- Behavior
- Description: This study conducted the first high-resolution investigation of the ichthyofaunal assemblages on a high-latitude coral reef in the Western Indian Ocean (WIO). Two-Mile reef, in South Africa, is a large, accessible patch-reef, and was selected as a candidate study area. Although the effect of season in structuring coral reef fish communities is most-often overlooked, the relationship between these fish communities and their habitat structure has been investigated. In South Africa, however, neither of these potential community-level drivers has been explored. As coral reefs worldwide are faced with high levels of usage pressure, nondestructive underwater visual census (UVC) techniques were identified as the most appropriate survey methods. This study had two primary aims that were; (1) to identify the most suitable technique for the UVC of coral reef fishes, and to test variations of the selected technique for appropriateness to implementation in long-term monitoring programs, and (2) to determine if possible changes to ichthyofaunal community structure could be related to trends in season and/or habitat characteristics. A review of the literature indicated that the most appropriate UVC method for surveying epibenthic coral reef fishes is underwater transecting. To compare the traditional slate-based transects to variations that implement digital image technology, slate transects were compared to a first-attempt digital photographic transect technique, and digital videographic transects. Videographic transects produced the most favourable species richness, abundance, and standard deviations of the three techniques. Diversity was not significantly different between transect techniques. The minimum required sample size was lowest for videographic transects (17 replicates), intermediate for photographic transects (27 replicates) and highest for slate transects (37 replicates). Videographic and photographic transects required greater analysis time to generate counts, but required lower observer training time. While videographic transects produced the lowest proportion of species considered unidentifiable, all three transect techniques showed similar functionality to surveying epibenthic coral reef fishes. Videographic transects were therefore identified as the most appropriate UVC technique for this study. Videographic transects at shallow (6 – 14 m), intermediate (14 – 22 m) and deep (22 – 30 m) depths in mid-winter and mid-summer, sampled a total of 41 families consisting of 209 species and 18172 individuals, dominated by pomacentrids in abundance and labrids in richness. The fish assemblages on Two-Mile Reef were found to be similar in composition to lower-latitude WIO reefs. Overall ichthyofaunal abundance and richness was significantly higher in summer than in winter, and was higher at shallow sites than at intermediate and deep sites. A multivariate approach confirmed differences between seasons at shallow depths but not between seasons at intermediate and deep depths. The fish assemblages on Two-Mile Reef can therefore be described as being comprised of four relatively distinct communities: a shallow, winter community; a shallow, summer community; a year-round intermediate community; and a year-round deep community. The distributions of discriminating species indicated that high abundances of the algal-feeding pomacentrids are observed only at shallow and intermediate sites while high abundances of the zooplanktivorous serranid subfamily, the Anthiinae, are observed predominantly at deep sites. Assessment of all measured supplementary variables indicated that of all factor combinations, observed patterns could be ascribed most strongly to depth. Quantification of reef characteristics indicated that as depth increases, habitat complexity decreases, benthic communities shift from dense coral domination to sparse sponge domination, and algal biomass and cover decreases. The ability of the videographic transect technique to detect changes in community structure with season and depth indicates that season and depth should be accounted for in future high-latitude ichtyofaunal surveys, and that the videographic transect technique is suitable for implementation in long-term monitoring programs on coral reefs. The similarity in fish assemblages between Two-Mile Reef and lower latitude regions suggests that the protocol for surveying epibenthic coral reef fishes, resulting from this study, is relevant throughout the continental WIO.
- Full Text:
- Authors: Wartenberg, Reece
- Date: 2012
- Subjects: Coral reef fishes -- Africa, Southern , Coral reef fishes -- Indian Ocean , Coral reef fishes -- Behavior , Fish communities -- Africa, Southern , Fish communities -- Indian Ocean , Groundfishes -- Africa, Southern , Groundfishes -- Indian Ocean , Groundfishes -- Behavior
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5308 , http://hdl.handle.net/10962/d1005153 , Coral reef fishes -- Africa, Southern , Coral reef fishes -- Indian Ocean , Coral reef fishes -- Behavior , Fish communities -- Africa, Southern , Fish communities -- Indian Ocean , Groundfishes -- Africa, Southern , Groundfishes -- Indian Ocean , Groundfishes -- Behavior
- Description: This study conducted the first high-resolution investigation of the ichthyofaunal assemblages on a high-latitude coral reef in the Western Indian Ocean (WIO). Two-Mile reef, in South Africa, is a large, accessible patch-reef, and was selected as a candidate study area. Although the effect of season in structuring coral reef fish communities is most-often overlooked, the relationship between these fish communities and their habitat structure has been investigated. In South Africa, however, neither of these potential community-level drivers has been explored. As coral reefs worldwide are faced with high levels of usage pressure, nondestructive underwater visual census (UVC) techniques were identified as the most appropriate survey methods. This study had two primary aims that were; (1) to identify the most suitable technique for the UVC of coral reef fishes, and to test variations of the selected technique for appropriateness to implementation in long-term monitoring programs, and (2) to determine if possible changes to ichthyofaunal community structure could be related to trends in season and/or habitat characteristics. A review of the literature indicated that the most appropriate UVC method for surveying epibenthic coral reef fishes is underwater transecting. To compare the traditional slate-based transects to variations that implement digital image technology, slate transects were compared to a first-attempt digital photographic transect technique, and digital videographic transects. Videographic transects produced the most favourable species richness, abundance, and standard deviations of the three techniques. Diversity was not significantly different between transect techniques. The minimum required sample size was lowest for videographic transects (17 replicates), intermediate for photographic transects (27 replicates) and highest for slate transects (37 replicates). Videographic and photographic transects required greater analysis time to generate counts, but required lower observer training time. While videographic transects produced the lowest proportion of species considered unidentifiable, all three transect techniques showed similar functionality to surveying epibenthic coral reef fishes. Videographic transects were therefore identified as the most appropriate UVC technique for this study. Videographic transects at shallow (6 – 14 m), intermediate (14 – 22 m) and deep (22 – 30 m) depths in mid-winter and mid-summer, sampled a total of 41 families consisting of 209 species and 18172 individuals, dominated by pomacentrids in abundance and labrids in richness. The fish assemblages on Two-Mile Reef were found to be similar in composition to lower-latitude WIO reefs. Overall ichthyofaunal abundance and richness was significantly higher in summer than in winter, and was higher at shallow sites than at intermediate and deep sites. A multivariate approach confirmed differences between seasons at shallow depths but not between seasons at intermediate and deep depths. The fish assemblages on Two-Mile Reef can therefore be described as being comprised of four relatively distinct communities: a shallow, winter community; a shallow, summer community; a year-round intermediate community; and a year-round deep community. The distributions of discriminating species indicated that high abundances of the algal-feeding pomacentrids are observed only at shallow and intermediate sites while high abundances of the zooplanktivorous serranid subfamily, the Anthiinae, are observed predominantly at deep sites. Assessment of all measured supplementary variables indicated that of all factor combinations, observed patterns could be ascribed most strongly to depth. Quantification of reef characteristics indicated that as depth increases, habitat complexity decreases, benthic communities shift from dense coral domination to sparse sponge domination, and algal biomass and cover decreases. The ability of the videographic transect technique to detect changes in community structure with season and depth indicates that season and depth should be accounted for in future high-latitude ichtyofaunal surveys, and that the videographic transect technique is suitable for implementation in long-term monitoring programs on coral reefs. The similarity in fish assemblages between Two-Mile Reef and lower latitude regions suggests that the protocol for surveying epibenthic coral reef fishes, resulting from this study, is relevant throughout the continental WIO.
- Full Text:
The life history and fishery assessment of largespot pompano, Trachinotus botla, in northern KwaZulu-Natal, South Africa
- Authors: Parker, Denham
- Date: 2012
- Subjects: Trachinotus -- South Africa -- KwaZulu-Natal , Carangidae -- South Africa -- KwaZulu-Natal , Fishing -- South Africa -- KwaZulu-Natal , Fishery management -- South Africa -- KwaZulu-Natal , Fishing -- Economic aspects -- South Africa -- KwaZulu-Natal , Fish stock assessment -- South Africa -- KwaZulu-Natal , Trachinotus -- Growth -- South Africa -- KwaZulu-Natal , Trachinotus -- Breeding -- South Africa -- KwaZulu-Natal , Trachinotus -- Food -- South Africa -- KwaZulu-Natal , Host-parasite relationships -- South Africa -- KwaZulu-Natal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5296 , http://hdl.handle.net/10962/d1005141 , Trachinotus -- South Africa -- KwaZulu-Natal , Carangidae -- South Africa -- KwaZulu-Natal , Fishing -- South Africa -- KwaZulu-Natal , Fishery management -- South Africa -- KwaZulu-Natal , Fishing -- Economic aspects -- South Africa -- KwaZulu-Natal , Fish stock assessment -- South Africa -- KwaZulu-Natal , Trachinotus -- Growth -- South Africa -- KwaZulu-Natal , Trachinotus -- Breeding -- South Africa -- KwaZulu-Natal , Trachinotus -- Food -- South Africa -- KwaZulu-Natal , Host-parasite relationships -- South Africa -- KwaZulu-Natal
- Description: Largespot pompano, Trachinotus botla, is a surf zone carangid with a cosmopolitan distribution in subtropical and tropical waters. Within South Africa, the species occurs along the KwaZulu-Natal coastline where it is a popular recreational fishing target. Recreational fishing in southern Africa has developed significantly in recent years, and is now regarded as an industry with huge economic potential. The long-term contribution of South African recreational fisheries to local economies is reliant upon sustainable exploitation through effective management. Trachinotus botla was found to grow rapidly with maximum observed age of six years. Otolith growth zone deposition was validated using edge analysis. Growth was similar between males and females until ~350 mm FL after which females continued to grow while growth in males slowed. The resulting overall sex ratio was slightly female-biased (1 male: 1.3 females). Trachinotus botla matures early with all fish considered to be mature at 290 mm FL, which corresponds to an age of three years. A protracted spawning season was observed ranging from November to February and there was evidence to suggest that T. botla is a serial spawner. Dietary analysis indicates that T. botla is an opportunistic predator with a catholic diet. The opportunistic utilization of “superabundant” prey items is a fundamental characteristic of the species feeding habits. An ontogenetic dietary shift was observed at approximately 300 mm FL that was linked to a shift in habitat preference. This thesis provided the first evidence that infection by the tongue-replacing isopod, Cymothoa borbonica, reduces the growth rate of wild host fish populations despite not affecting the diet, feeding habits and feeding frequency of their hosts. These results also highlighted the inadequacy of condition factor as a proxy for quantifying the effects of cymothoids on their hosts, and identified the need to incorporate host age when assessing the effects of parasite infection. Information on the life-cycle of C. borbonica, including estimates of the hypothesized “infectious” period and its longevity were obtained through analysis of parasite infection patterns as a function of host age and length. An assessment of the T. botla shore fishery of KwaZulu-Natal using historical catch data revealed that the fishery is stable. Productivity of the T. botla fishery increased towards the north of KwaZulu-Natal. Distinct seasonal variations in the T. botla fishery were also noted with catches peaking in summer months and lowest during winter. A per-recruit assessment revealed that the species is currently underexploited (SBR = 62% of pristine levels), and fishing mortality rate could be doubled before reaching the spawner biomass-per recruit target reference point of FSB₄₀. A combination of the life history characteristics of species, the nature of the recreational shore fishery together with the current management regulation of 5 fish person⁻¹ day⁻¹ has ensured the sustainable utilization of the T. botla resource in KwaZulu-Natal.
- Full Text:
- Authors: Parker, Denham
- Date: 2012
- Subjects: Trachinotus -- South Africa -- KwaZulu-Natal , Carangidae -- South Africa -- KwaZulu-Natal , Fishing -- South Africa -- KwaZulu-Natal , Fishery management -- South Africa -- KwaZulu-Natal , Fishing -- Economic aspects -- South Africa -- KwaZulu-Natal , Fish stock assessment -- South Africa -- KwaZulu-Natal , Trachinotus -- Growth -- South Africa -- KwaZulu-Natal , Trachinotus -- Breeding -- South Africa -- KwaZulu-Natal , Trachinotus -- Food -- South Africa -- KwaZulu-Natal , Host-parasite relationships -- South Africa -- KwaZulu-Natal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5296 , http://hdl.handle.net/10962/d1005141 , Trachinotus -- South Africa -- KwaZulu-Natal , Carangidae -- South Africa -- KwaZulu-Natal , Fishing -- South Africa -- KwaZulu-Natal , Fishery management -- South Africa -- KwaZulu-Natal , Fishing -- Economic aspects -- South Africa -- KwaZulu-Natal , Fish stock assessment -- South Africa -- KwaZulu-Natal , Trachinotus -- Growth -- South Africa -- KwaZulu-Natal , Trachinotus -- Breeding -- South Africa -- KwaZulu-Natal , Trachinotus -- Food -- South Africa -- KwaZulu-Natal , Host-parasite relationships -- South Africa -- KwaZulu-Natal
- Description: Largespot pompano, Trachinotus botla, is a surf zone carangid with a cosmopolitan distribution in subtropical and tropical waters. Within South Africa, the species occurs along the KwaZulu-Natal coastline where it is a popular recreational fishing target. Recreational fishing in southern Africa has developed significantly in recent years, and is now regarded as an industry with huge economic potential. The long-term contribution of South African recreational fisheries to local economies is reliant upon sustainable exploitation through effective management. Trachinotus botla was found to grow rapidly with maximum observed age of six years. Otolith growth zone deposition was validated using edge analysis. Growth was similar between males and females until ~350 mm FL after which females continued to grow while growth in males slowed. The resulting overall sex ratio was slightly female-biased (1 male: 1.3 females). Trachinotus botla matures early with all fish considered to be mature at 290 mm FL, which corresponds to an age of three years. A protracted spawning season was observed ranging from November to February and there was evidence to suggest that T. botla is a serial spawner. Dietary analysis indicates that T. botla is an opportunistic predator with a catholic diet. The opportunistic utilization of “superabundant” prey items is a fundamental characteristic of the species feeding habits. An ontogenetic dietary shift was observed at approximately 300 mm FL that was linked to a shift in habitat preference. This thesis provided the first evidence that infection by the tongue-replacing isopod, Cymothoa borbonica, reduces the growth rate of wild host fish populations despite not affecting the diet, feeding habits and feeding frequency of their hosts. These results also highlighted the inadequacy of condition factor as a proxy for quantifying the effects of cymothoids on their hosts, and identified the need to incorporate host age when assessing the effects of parasite infection. Information on the life-cycle of C. borbonica, including estimates of the hypothesized “infectious” period and its longevity were obtained through analysis of parasite infection patterns as a function of host age and length. An assessment of the T. botla shore fishery of KwaZulu-Natal using historical catch data revealed that the fishery is stable. Productivity of the T. botla fishery increased towards the north of KwaZulu-Natal. Distinct seasonal variations in the T. botla fishery were also noted with catches peaking in summer months and lowest during winter. A per-recruit assessment revealed that the species is currently underexploited (SBR = 62% of pristine levels), and fishing mortality rate could be doubled before reaching the spawner biomass-per recruit target reference point of FSB₄₀. A combination of the life history characteristics of species, the nature of the recreational shore fishery together with the current management regulation of 5 fish person⁻¹ day⁻¹ has ensured the sustainable utilization of the T. botla resource in KwaZulu-Natal.
- Full Text:
Videographic analysis of the Coelacanth, Latimeria Chalumnae, and associated habitats in the Isimangaliso Wetland Park, KwaZulu-Natal, South Africa
- Thornycroft, Rosanne Elizabeth
- Authors: Thornycroft, Rosanne Elizabeth
- Date: 2012
- Subjects: Isimangaliso Wetland Park , Coelacanth , Coelacanth -- South Africa -- KwaZulu-Natal , Habitat (Ecology) , Coelacanth -- Behavior -- South Africa -- KwaZulu-Natal , Coelacanth -- Habitat -- South Africa -- KwaZulu-Natal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5333 , http://hdl.handle.net/10962/d1005179 , Isimangaliso Wetland Park , Coelacanth , Coelacanth -- South Africa -- KwaZulu-Natal , Habitat (Ecology) , Coelacanth -- Behavior -- South Africa -- KwaZulu-Natal , Coelacanth -- Habitat -- South Africa -- KwaZulu-Natal
- Description: Videography is a valuable tool in biological and ecological studies. Using video footage obtained during previous coelacanth surveys, this thesis investigated coelacanths and their associated habitats in the submarine canyons of iSimangaliso Wetland Park, South Africa. This thesis aimed to (1) describe the biological habitats within the submarine canyons, (2) determine coelacanth distribution within these habitats, and (3) assess the use of computer-aided identification to successfully identify individual coelacanths. Seven different habitat types were noted with the most distinctive being the canyon margins that consisted of dense agglomerations of gorgonians, wire and whip corals, and sponges. Results suggested that although substratum type has a great influence on invertebrate community structure in the canyons, depth is the principal factor. Coelacanths were associated with cave habitats within the steep rocky canyon walls. Habitat analyses allowed predictive classification tree models to be constructed. Depth, underlying percentage of rock, and percentage cover of gorgonians and sponges were the most important variables for determining coelacanth presence and absence. The overall correct classification rate for the model was estimated at 96.6%, correctly predicting coelacanth absence (> 99%) better than presence (60%). Because coelacanths have a unique spot pattern it was possible to quickly and accurately identify specific individuals photographically using computer-aided identification software. Without any manual intervention by an operator the software accurately identified between 56 and 92% of the individuals. Identification success increased to 100% if the operator could also manually select from other potential matching photographs. It was also shown that fish exhibiting a yaw angle not exceeding 60° could be accurately identified in photographs. Each of the sections presented in this thesis represent a possible step towards analysing coelacanth-related habitats, locating and then analysing new habitats. Steps include first locating a population and then performing a habitat analysis. Coelacanth location within the different habitats can then be determined allowing the development of predictive models to potentially identify possible locations of new populations. The final step is to identify individual fish within the population for assessing demographic parameters and population monitoring.
- Full Text:
- Authors: Thornycroft, Rosanne Elizabeth
- Date: 2012
- Subjects: Isimangaliso Wetland Park , Coelacanth , Coelacanth -- South Africa -- KwaZulu-Natal , Habitat (Ecology) , Coelacanth -- Behavior -- South Africa -- KwaZulu-Natal , Coelacanth -- Habitat -- South Africa -- KwaZulu-Natal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5333 , http://hdl.handle.net/10962/d1005179 , Isimangaliso Wetland Park , Coelacanth , Coelacanth -- South Africa -- KwaZulu-Natal , Habitat (Ecology) , Coelacanth -- Behavior -- South Africa -- KwaZulu-Natal , Coelacanth -- Habitat -- South Africa -- KwaZulu-Natal
- Description: Videography is a valuable tool in biological and ecological studies. Using video footage obtained during previous coelacanth surveys, this thesis investigated coelacanths and their associated habitats in the submarine canyons of iSimangaliso Wetland Park, South Africa. This thesis aimed to (1) describe the biological habitats within the submarine canyons, (2) determine coelacanth distribution within these habitats, and (3) assess the use of computer-aided identification to successfully identify individual coelacanths. Seven different habitat types were noted with the most distinctive being the canyon margins that consisted of dense agglomerations of gorgonians, wire and whip corals, and sponges. Results suggested that although substratum type has a great influence on invertebrate community structure in the canyons, depth is the principal factor. Coelacanths were associated with cave habitats within the steep rocky canyon walls. Habitat analyses allowed predictive classification tree models to be constructed. Depth, underlying percentage of rock, and percentage cover of gorgonians and sponges were the most important variables for determining coelacanth presence and absence. The overall correct classification rate for the model was estimated at 96.6%, correctly predicting coelacanth absence (> 99%) better than presence (60%). Because coelacanths have a unique spot pattern it was possible to quickly and accurately identify specific individuals photographically using computer-aided identification software. Without any manual intervention by an operator the software accurately identified between 56 and 92% of the individuals. Identification success increased to 100% if the operator could also manually select from other potential matching photographs. It was also shown that fish exhibiting a yaw angle not exceeding 60° could be accurately identified in photographs. Each of the sections presented in this thesis represent a possible step towards analysing coelacanth-related habitats, locating and then analysing new habitats. Steps include first locating a population and then performing a habitat analysis. Coelacanth location within the different habitats can then be determined allowing the development of predictive models to potentially identify possible locations of new populations. The final step is to identify individual fish within the population for assessing demographic parameters and population monitoring.
- Full Text:
- «
- ‹
- 1
- ›
- »