An in-silico investigation of Morita-Baylis-Hillman accessible heterocyclic analogues for applications as novel HIV-1 C protease inhibitors
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Protease inhibitors , Heterocyclic compounds , HIV (Viruses) , HIV infections , Drug resistance , Cheminformatics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4152 , http://hdl.handle.net/10962/d1017913
- Description: Cheminformatic approaches have been employed to optimize the bis-coumarin scaffold identified by Onywera et al. (2012) as a potential hit against the protease HIV-1 protein. The Open Babel library of commands was used to access functions that were incorporated into a markov chain recursive program that generated 17750 analogues of the bis-coumarin scaffold. The Morita-Baylis-Hillman accessible heterocycles were used to introduce structural diversity within the virtual library. In silico high through-put virtual screening using AutoDock Vina was used to rapidly screen the virtual library ligand set against 61 protease models built by Onywera et al. (2012). CheS-Mapper computed a principle component analysis of the compounds based on 13 selected chemical descriptors. The compounds were plotted against the principle component analysis within a 3 dimensional chemical space in order to inspect the diversity of the virtual library. The physicochemical properties and binding affinities were used to identify the top 3 performing ligands. ACPYPE was used to inspect the constitutional properties and eliminated virtual compounds that possessed open valences. Chromene based ligand 805 and ligand 6610 were selected as the lead candidates from the high-throughput virtual screening procedure we employed. Molecular dynamic simulations of the lead candidates performed for 5 ns allowed the stability of the ligand protein complexes with protease model 305152. The free energy of binding of the leads with protease model 305152 was computed over the first 50 ps of simulation using the molecular mechanics Poisson-Boltzmann method. Analysis structural features and energy profiles from molecular dynamic simulations of the protein–ligand complexes indicated that although ligand 805 had a weaker binding affinity in terms of docking, it outperformed ligand 6610 in terms of complex stability and free energy of binding. Medicinal chemistry approaches will be used to optimize the lead candidates before their analogues will be synthesized and assayed for in vivo protease activity.
- Full Text:
- Date Issued: 2015
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Protease inhibitors , Heterocyclic compounds , HIV (Viruses) , HIV infections , Drug resistance , Cheminformatics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4152 , http://hdl.handle.net/10962/d1017913
- Description: Cheminformatic approaches have been employed to optimize the bis-coumarin scaffold identified by Onywera et al. (2012) as a potential hit against the protease HIV-1 protein. The Open Babel library of commands was used to access functions that were incorporated into a markov chain recursive program that generated 17750 analogues of the bis-coumarin scaffold. The Morita-Baylis-Hillman accessible heterocycles were used to introduce structural diversity within the virtual library. In silico high through-put virtual screening using AutoDock Vina was used to rapidly screen the virtual library ligand set against 61 protease models built by Onywera et al. (2012). CheS-Mapper computed a principle component analysis of the compounds based on 13 selected chemical descriptors. The compounds were plotted against the principle component analysis within a 3 dimensional chemical space in order to inspect the diversity of the virtual library. The physicochemical properties and binding affinities were used to identify the top 3 performing ligands. ACPYPE was used to inspect the constitutional properties and eliminated virtual compounds that possessed open valences. Chromene based ligand 805 and ligand 6610 were selected as the lead candidates from the high-throughput virtual screening procedure we employed. Molecular dynamic simulations of the lead candidates performed for 5 ns allowed the stability of the ligand protein complexes with protease model 305152. The free energy of binding of the leads with protease model 305152 was computed over the first 50 ps of simulation using the molecular mechanics Poisson-Boltzmann method. Analysis structural features and energy profiles from molecular dynamic simulations of the protein–ligand complexes indicated that although ligand 805 had a weaker binding affinity in terms of docking, it outperformed ligand 6610 in terms of complex stability and free energy of binding. Medicinal chemistry approaches will be used to optimize the lead candidates before their analogues will be synthesized and assayed for in vivo protease activity.
- Full Text:
- Date Issued: 2015
Comparative study of the effect of silver nanoparticles on the hexokinase activity from human and Trypanosoma brucei
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
Studies towards the development of novel antimalarial agents
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »