An Integrated Management System to reduce False Codling Moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) infested citrus fruit from being packed for export
- Authors: Mac Aleer, Clint
- Date: 2019
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Biological control -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Insect pests -- Biological control -- South Africa , Insecticides , Citrus fruit industry -- South Africa , South Africa -- Commerce -- European Economic Community Countries
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92219 , vital:30691
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is indigenous to southern Africa and is an important pest of citrus in this region. As a result of its endemism to sub-Saharan Africa, several countries to which South Africa exports citrus, regulate it as a phytosanitary pest. Consequently, it is necessary to ship fruit to these markets under cold-disinfestation protocols. This has been possible, as until recently, all of these markets could be considered relatively small niche markets. The South African citrus industry exports approximately 130 million cartons of fruit (15 kg equivalent) annually. During the 2017 season, a total of 48 million cartons were exported to the European Union (EU), which is the equivalent of 41% of South Africa’s total export volume, thus making the EU South Africa’s most important export market. In 2013 the European and Mediterranean Plant Protection Organisation (EPPO) conducted a pest risk analysis (PRA) on FCM, leading to the EU declaring it an officially regulated pest for this region, effective of 1 January 2018. Citrus is regarded as a preferred non-native host of FCM and South African citrus was identified as a primary focus due to large volumes being exported to Europe. Shipping under cold disinfestation is not possible with such large volumes of fruit. Additionally, several cultivars would suffer high levels of chilling injury under such conditions. In this study, an Integrated Management System was tested with pre- and postharvest controls to test the hypothesis that pre-harvest interventions resulted in lower post-harvest infection. Thirty orchards ranging from soft citrus cultivars such as Nule and Nova Mandarins, to Navel orange cultivars such as Newhall, Palmer and Late Navel and ending with Valencia cultivars such as Midknight and Delta, were identified for this study. This system relies on pre-harvest inspections such as FCM trap counts and fruit infestation on data trees in every orchard, with associated thresholds for action or continued compliance. Inspections were conducted on a weekly basis. There was a significant relationship between the moth catches and FCM infestation for the full monitoring period, using a two-week lag period for infestation. Inspections of harvested fruit were conducted at the packhouse to determine FCM infestation. This included inspection of the fruit on delivery to the packhouse, on the packing line, and a final fruit sample taken from the packed product and inspected for FCM. The highest levels of infestation were recorded on the Navel cultivars, thus confirming that Navels cultivars are a preferred host for FCM. Significant positive relationships were recorded between FCM infestation during the last 4 weeks before harvest and the level of infestation in the fruit delivered to the packhouse and between the fruit delivered to the packhouse and in the fruit packed in a carton for export. There was a substantial reduction in infestation between the fruit delivered to the packhouse and the fruit packed in a carton for export, with certain orchards recording as much as a 93% reduction in the fruit packed in a carton, which indicated that the packhouse could effectively identify and remove FCM infested fruit. The outcome of the study is that a holistic management approach minimizes the risk of FCM in citrus fruit destined for export and therefore mitigate the risk associated with FCM.
- Full Text:
- Authors: Mac Aleer, Clint
- Date: 2019
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Biological control -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Insect pests -- Biological control -- South Africa , Insecticides , Citrus fruit industry -- South Africa , South Africa -- Commerce -- European Economic Community Countries
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92219 , vital:30691
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is indigenous to southern Africa and is an important pest of citrus in this region. As a result of its endemism to sub-Saharan Africa, several countries to which South Africa exports citrus, regulate it as a phytosanitary pest. Consequently, it is necessary to ship fruit to these markets under cold-disinfestation protocols. This has been possible, as until recently, all of these markets could be considered relatively small niche markets. The South African citrus industry exports approximately 130 million cartons of fruit (15 kg equivalent) annually. During the 2017 season, a total of 48 million cartons were exported to the European Union (EU), which is the equivalent of 41% of South Africa’s total export volume, thus making the EU South Africa’s most important export market. In 2013 the European and Mediterranean Plant Protection Organisation (EPPO) conducted a pest risk analysis (PRA) on FCM, leading to the EU declaring it an officially regulated pest for this region, effective of 1 January 2018. Citrus is regarded as a preferred non-native host of FCM and South African citrus was identified as a primary focus due to large volumes being exported to Europe. Shipping under cold disinfestation is not possible with such large volumes of fruit. Additionally, several cultivars would suffer high levels of chilling injury under such conditions. In this study, an Integrated Management System was tested with pre- and postharvest controls to test the hypothesis that pre-harvest interventions resulted in lower post-harvest infection. Thirty orchards ranging from soft citrus cultivars such as Nule and Nova Mandarins, to Navel orange cultivars such as Newhall, Palmer and Late Navel and ending with Valencia cultivars such as Midknight and Delta, were identified for this study. This system relies on pre-harvest inspections such as FCM trap counts and fruit infestation on data trees in every orchard, with associated thresholds for action or continued compliance. Inspections were conducted on a weekly basis. There was a significant relationship between the moth catches and FCM infestation for the full monitoring period, using a two-week lag period for infestation. Inspections of harvested fruit were conducted at the packhouse to determine FCM infestation. This included inspection of the fruit on delivery to the packhouse, on the packing line, and a final fruit sample taken from the packed product and inspected for FCM. The highest levels of infestation were recorded on the Navel cultivars, thus confirming that Navels cultivars are a preferred host for FCM. Significant positive relationships were recorded between FCM infestation during the last 4 weeks before harvest and the level of infestation in the fruit delivered to the packhouse and between the fruit delivered to the packhouse and in the fruit packed in a carton for export. There was a substantial reduction in infestation between the fruit delivered to the packhouse and the fruit packed in a carton for export, with certain orchards recording as much as a 93% reduction in the fruit packed in a carton, which indicated that the packhouse could effectively identify and remove FCM infested fruit. The outcome of the study is that a holistic management approach minimizes the risk of FCM in citrus fruit destined for export and therefore mitigate the risk associated with FCM.
- Full Text:
Augmentative releases of Dactylopius austrinus De Lotto (Dactylopiidae; Hemiptera) for biological control of Opuntia aurantiaca Lindley (Cactaceae), in South Africa
- Authors: Mulateli, Thifhelimbilu
- Date: 2019
- Subjects: Opuntia aurantiaca -- Biolotical control -- South Africa , Invasive plants -- Biolotical control -- South Africa , Dactylopius austrinus De Lotto -- South Africa , Dactylopius -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92931 , vital:30765
- Description: Opuntia aurantiaca Lindely (Cactaceae) is an invasive alien cactus which has detrimental effects on agroecosystems and indigenous biodiversity in South Africa. Dense infestations over large areas reduce grazing capacity and indigenous biodiversity. Despite the release of a biological control agent, the cochineal insect Dactylopius austrinus De Lotto (Dactylopiidae), the weed is still considered a major problem in many parts of the country. Biological control has relied heavily on classical biological control, with little augmentative biological control implemented. This study investigated the outcome of mass-rearing and augmentative releases of D. austrinus for the control of O. aurantiaca. Augmentative releases are thought to improve the level of control by increasing agent densities in the field and thus increasing the level of damage inflicted to the plants. All data were collected with the intention to optimize release strategies so that the maximum benefit from the biological control agent could be achieved. An impact study was conducted using potted plants in a greenhouse to quantify the efficacy of multiple releases of the agent on the target weed. All three of the release treatments showed consistently higher proportion of cochineal than the controls, as well as the insect exclusion treatments, and these differences were statistically significant. The number of cladodes per plant increased significantly for the insect exclusion and control treatment over the period of the study, whilst all three release treatments decreased steadily over the same period. This study indicated that the agent is damaging to O. aurantiaca and that a single release event was beneficial but that multiple releases did not result in greater levels of control. A post-release evaluation was carried out to quantify the impact of releases of D. austrinus on O. aurantiaca in the field. Plots where the agent was excluded were compared with those where the agent was left at natural field densities and three treatments where agent populations were augmented to varying degrees through releases. The percentage of cochineal infested cladodes for all treatments decreased over time from the initiation of the experiment in October 2017 until the end of the experiment in October 2018. Opuntia aurantiaca densities also decreased over time for all treatments. The insect exclusion treatment had the greatest number of plants for the duration of the study, but this was not significantly different from other treatments. Dactylopius austrinus was damaging to O. aurantiaca, but climatic conditions in the field limited the efficacy of releases. Although O. aurantiaca density decreased during the experiment, it was evident that the reduced number of plants was not due to augmentation of the cochineal populations from the releases that were conducted. The experiment was conducted over a very dry period, when cochineal was particularly effective, so although augmentative releases did not improve the level of control, the natural population of cochineal was high and very damaging to O. aurantiaca over the course of the experiment. Releasing during wet periods, when the agent is less effective, could augment agent populations at a time when natural populations would be low, and hence improve levels of control further. Although this study was limited to a short period of two years, the results of this study suggest that the number of releases is less important than the timing of releases. Releasing immediately after periods of high rainfall is likely to be beneficial, while releasing during dry periods, or during winter when temperatures are low, is less effective. Dactylopius austrinus populations should be constantly monitored so that releases can be conducted when cochineal populations are low and the climatic conditions are correct. If the timing of release events is appropriate, then the over level of control of O. aurantiaca using D. austrinus could be improved.
- Full Text:
- Authors: Mulateli, Thifhelimbilu
- Date: 2019
- Subjects: Opuntia aurantiaca -- Biolotical control -- South Africa , Invasive plants -- Biolotical control -- South Africa , Dactylopius austrinus De Lotto -- South Africa , Dactylopius -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92931 , vital:30765
- Description: Opuntia aurantiaca Lindely (Cactaceae) is an invasive alien cactus which has detrimental effects on agroecosystems and indigenous biodiversity in South Africa. Dense infestations over large areas reduce grazing capacity and indigenous biodiversity. Despite the release of a biological control agent, the cochineal insect Dactylopius austrinus De Lotto (Dactylopiidae), the weed is still considered a major problem in many parts of the country. Biological control has relied heavily on classical biological control, with little augmentative biological control implemented. This study investigated the outcome of mass-rearing and augmentative releases of D. austrinus for the control of O. aurantiaca. Augmentative releases are thought to improve the level of control by increasing agent densities in the field and thus increasing the level of damage inflicted to the plants. All data were collected with the intention to optimize release strategies so that the maximum benefit from the biological control agent could be achieved. An impact study was conducted using potted plants in a greenhouse to quantify the efficacy of multiple releases of the agent on the target weed. All three of the release treatments showed consistently higher proportion of cochineal than the controls, as well as the insect exclusion treatments, and these differences were statistically significant. The number of cladodes per plant increased significantly for the insect exclusion and control treatment over the period of the study, whilst all three release treatments decreased steadily over the same period. This study indicated that the agent is damaging to O. aurantiaca and that a single release event was beneficial but that multiple releases did not result in greater levels of control. A post-release evaluation was carried out to quantify the impact of releases of D. austrinus on O. aurantiaca in the field. Plots where the agent was excluded were compared with those where the agent was left at natural field densities and three treatments where agent populations were augmented to varying degrees through releases. The percentage of cochineal infested cladodes for all treatments decreased over time from the initiation of the experiment in October 2017 until the end of the experiment in October 2018. Opuntia aurantiaca densities also decreased over time for all treatments. The insect exclusion treatment had the greatest number of plants for the duration of the study, but this was not significantly different from other treatments. Dactylopius austrinus was damaging to O. aurantiaca, but climatic conditions in the field limited the efficacy of releases. Although O. aurantiaca density decreased during the experiment, it was evident that the reduced number of plants was not due to augmentation of the cochineal populations from the releases that were conducted. The experiment was conducted over a very dry period, when cochineal was particularly effective, so although augmentative releases did not improve the level of control, the natural population of cochineal was high and very damaging to O. aurantiaca over the course of the experiment. Releasing during wet periods, when the agent is less effective, could augment agent populations at a time when natural populations would be low, and hence improve levels of control further. Although this study was limited to a short period of two years, the results of this study suggest that the number of releases is less important than the timing of releases. Releasing immediately after periods of high rainfall is likely to be beneficial, while releasing during dry periods, or during winter when temperatures are low, is less effective. Dactylopius austrinus populations should be constantly monitored so that releases can be conducted when cochineal populations are low and the climatic conditions are correct. If the timing of release events is appropriate, then the over level of control of O. aurantiaca using D. austrinus could be improved.
- Full Text:
Climatic suitability of Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), a shoot-boring moth for the biological control of Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) in South Africa
- Authors: Nqayi, Slindile Brightness
- Date: 2019
- Subjects: CLIMEX , Chromolaena odorata -- Biological control -- South Africa , Tortricidae -- South Africa , Bioclimatology -- Software
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92208 , vital:30681
- Description: Biological control using natural enemies introduced from the native range is an integral component of the management of Chromolaena odorata, a serious invader in the eastern regions of South Africa. A number of biological control agents for C. odorata have been released in South Africa, and one of them, Dichrorampha odorata, has failed to establish. To understand if D. odorata failed to establish due to climate incompatibility, its thermal physiology was investigated. Thermal tolerance data were used to determine the developmental thresholds and number of generations that D. odorata is capable of going through in South Africa per year. These predictions were generated using CLIMEX temperature data and the degree-day parameters K and t0. Developmental time decreased with increasing temperatures ranging from 20 °C to 30°C, with immature stages not able to complete development at 18°C and 32°C. The developmental threshold, to, was determined as 8.45 °C with 872.4 degree-days required to complete development (K), indicating that D. odorata is capable of producing a maximum number of 6.5 generations per year in South Africa. The CLIMEX data indicated that the east coast regions of South Africa, which are the heaviest invaded areas by C. odorata in South Africa, were climatically most suitable for D. odorata to. D. odorata lower (LLT50) and upper (ULT50) lethal temperatures were -4.5°C and 39.64°C for larvae and 1.83 and 41.02°C for adults, and D. odorata adults were able to maintain locomotory functioning at 4.4 to 43.7°C, respectively. Acclimation at low and high temperatures indicate that when D. odorata was kept at a lower temperature of 20°C for 7 days, it became tolerant to warmer and cooler temperatures (1.95 and 44.41°C) when compared to D. odorata reared at 25°C (3.36 and 43.67°C) and 30°C (5.92 and 42.93°C). Dichrorampha odorata is therefore climatically suitable for release and should establish in South Africa to control C. odorata. The establishment and persistence of D. odorata will not be limited by climatic conditions but rather the distribution of its host weed, C. odorata in South Africa. Also, this study presents a decision-making protocol for the release of D. odorata to allow better performance in the field.
- Full Text:
- Authors: Nqayi, Slindile Brightness
- Date: 2019
- Subjects: CLIMEX , Chromolaena odorata -- Biological control -- South Africa , Tortricidae -- South Africa , Bioclimatology -- Software
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92208 , vital:30681
- Description: Biological control using natural enemies introduced from the native range is an integral component of the management of Chromolaena odorata, a serious invader in the eastern regions of South Africa. A number of biological control agents for C. odorata have been released in South Africa, and one of them, Dichrorampha odorata, has failed to establish. To understand if D. odorata failed to establish due to climate incompatibility, its thermal physiology was investigated. Thermal tolerance data were used to determine the developmental thresholds and number of generations that D. odorata is capable of going through in South Africa per year. These predictions were generated using CLIMEX temperature data and the degree-day parameters K and t0. Developmental time decreased with increasing temperatures ranging from 20 °C to 30°C, with immature stages not able to complete development at 18°C and 32°C. The developmental threshold, to, was determined as 8.45 °C with 872.4 degree-days required to complete development (K), indicating that D. odorata is capable of producing a maximum number of 6.5 generations per year in South Africa. The CLIMEX data indicated that the east coast regions of South Africa, which are the heaviest invaded areas by C. odorata in South Africa, were climatically most suitable for D. odorata to. D. odorata lower (LLT50) and upper (ULT50) lethal temperatures were -4.5°C and 39.64°C for larvae and 1.83 and 41.02°C for adults, and D. odorata adults were able to maintain locomotory functioning at 4.4 to 43.7°C, respectively. Acclimation at low and high temperatures indicate that when D. odorata was kept at a lower temperature of 20°C for 7 days, it became tolerant to warmer and cooler temperatures (1.95 and 44.41°C) when compared to D. odorata reared at 25°C (3.36 and 43.67°C) and 30°C (5.92 and 42.93°C). Dichrorampha odorata is therefore climatically suitable for release and should establish in South Africa to control C. odorata. The establishment and persistence of D. odorata will not be limited by climatic conditions but rather the distribution of its host weed, C. odorata in South Africa. Also, this study presents a decision-making protocol for the release of D. odorata to allow better performance in the field.
- Full Text:
Genetic characterisation of a range of geographically distinct Helicoverpa armigera nucleopolyhedrovirus (HearNPV) isolates and evaluation of biological activity against South African populations of the African bollworm, Helicoverpa armigera (Hu bner) (Lepidoptera: Noctuidae)
- Mtambanengwe, Kudzai Tapiwanashe Esau
- Authors: Mtambanengwe, Kudzai Tapiwanashe Esau
- Date: 2019
- Subjects: Helicoverpa armigera -- Biological control -- South Africa , Baculoviruses -- Genetics , Agricultural pests -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/97334 , vital:31426
- Description: The African bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a pest of economic and agricultural importance globally. It is a polyphagous pest that feeds on a wide range of host plants including economically important crops. The impact it has on agricultural systems makes its control a priority. The most common method of control is using chemical pesticides; however, continuous application of the pesticides has resulted in the development of resistance. The use of biological control has been investigated and established as an effective method of control as a standalone or part of an integrated pest management (IPM) system. The use of the baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV), has shown promise in the control of H. armigera. Commercial formulations based on the virus are available in many global markets. However, the identification of novel HearNPV isolates will aid in the control of H. armigera as well as provide alternative isolates that may have better virulence. Three new HearNPV isolates were purified and identified from three distinct geographical South African locations H. armigera cadavers and named HearNPV-Albany, HearNPV-KZN and HearNPV-Haygrove. The genomes of two of the HearNPV isolates, namely HearNPV-Albany and HearNPV-KZN were genetically characterised and compared to other geographically distinct HearNPV isolates. Virulence studies were performed comparing the new HearNPV isolates against established commercial HearNPV formulations, Helicovir™ and Helicovex® and other geographically distinct isolated HearNPV, HearNPV-G4 and HearNPV-SP1. Two laboratory colonies were established using H. armigera collected from South African fields in the Belmont Valley near Grahamstown labelled as Albany colony and a colony provided from Haygrove Eden farm near George labelled as Haygrove colony. Biological studies were carried out using the Albany H. armigera colony comparing the rate of development, survival and fertility on bell green peppers, cabbage leaves and on artificial diet. From the biological studies, it was recorded that development and survivorship was best on artificial diet. Regular quality control was required for the maintenance of the colony and continuous generations of healthy larvae were eventually established. Diseased cadavers with signs of baculovirus infection were collected after bioprospecting from the Kwa-Zulu Natal Province in South Africa and were labelled KZN isolate; Belmont Valley near Grahamstown and were labelled Albany isolate; and Haygrove Eden farm near George and were labelled Haygrove isolate for the study. A fourth isolate made up of a crude extract of occlusion bodies (OBs) first described by Whitlock was also analysed and labelled Whitlock isolate. Occlusion bodies were extracted, purified and morphologically identified from the KZN, Albany, Haygrove and Whitlock isolates using TEM. Genomic DNA, which was extracted from the purified OBs. Using PCR, the identity of the OBs as HearNPV was confirmed. Genomic analyses were performed on HearNPV-Albany and HearNPV-KZN through genetic characterisation and comparison with other geographically distinct HearNPV genomes to confirm novelty and establish potential genetic relationships between the isolates through evolutionary distances. Full genomic sequencing of the isolated HearNPV and comparison with other geographically distinct HearNPV isolates identified genomic differences that showed that the HearNPV isolates were novel. HearNPV-Albany and HearNPV-KZN were successfully sequenced and identified as novel isolates with unique fragment patterns and unique gene sequences through deletions or insertions when compared to other geographically distinct HearNPV. This raised the potential for differences in biological activity against H. armigera larvae when tested through biological assays. HearNPV-Whit genome assembly had low quality data which resulted in many gaps and failed assembly. The biological activity of HearNPV isolates from Spain, China, South Africa and two commercial formulations were studied against the laboratory established H. armigera South African colony. The LC50 values of the different South African HearNPV isolates were established to be between 7.7 × 101 OBs.ml-1 for the most effective and 3.2 × 102 OBs.ml-1 for the least effective. The Spanish and Chinese HearNPV isolates resulted in LC50 values of 2.0 × 102 OBs.ml-1 and 1.2 × 101 OBs.ml-1 respectively. The commercial formulations resulted in the least virulence observed with an LC50 of 5.84× 102 OBs.ml-1 and 9.0 × 102 OBs.ml-1 for Helicovex® and Helicovir™ respectively. In this study, novel South African HearNPV isolates were isolated and identified. Through characterisation and bioassays against South African H. armigera populations the HearNPV isolates were shown to have different virulence in comparison to geographically distinct isolates. From this research, there is potential for development of new H. armigera biopesticides based on the novel isolates after field trial testing.
- Full Text:
- Authors: Mtambanengwe, Kudzai Tapiwanashe Esau
- Date: 2019
- Subjects: Helicoverpa armigera -- Biological control -- South Africa , Baculoviruses -- Genetics , Agricultural pests -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/97334 , vital:31426
- Description: The African bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a pest of economic and agricultural importance globally. It is a polyphagous pest that feeds on a wide range of host plants including economically important crops. The impact it has on agricultural systems makes its control a priority. The most common method of control is using chemical pesticides; however, continuous application of the pesticides has resulted in the development of resistance. The use of biological control has been investigated and established as an effective method of control as a standalone or part of an integrated pest management (IPM) system. The use of the baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV), has shown promise in the control of H. armigera. Commercial formulations based on the virus are available in many global markets. However, the identification of novel HearNPV isolates will aid in the control of H. armigera as well as provide alternative isolates that may have better virulence. Three new HearNPV isolates were purified and identified from three distinct geographical South African locations H. armigera cadavers and named HearNPV-Albany, HearNPV-KZN and HearNPV-Haygrove. The genomes of two of the HearNPV isolates, namely HearNPV-Albany and HearNPV-KZN were genetically characterised and compared to other geographically distinct HearNPV isolates. Virulence studies were performed comparing the new HearNPV isolates against established commercial HearNPV formulations, Helicovir™ and Helicovex® and other geographically distinct isolated HearNPV, HearNPV-G4 and HearNPV-SP1. Two laboratory colonies were established using H. armigera collected from South African fields in the Belmont Valley near Grahamstown labelled as Albany colony and a colony provided from Haygrove Eden farm near George labelled as Haygrove colony. Biological studies were carried out using the Albany H. armigera colony comparing the rate of development, survival and fertility on bell green peppers, cabbage leaves and on artificial diet. From the biological studies, it was recorded that development and survivorship was best on artificial diet. Regular quality control was required for the maintenance of the colony and continuous generations of healthy larvae were eventually established. Diseased cadavers with signs of baculovirus infection were collected after bioprospecting from the Kwa-Zulu Natal Province in South Africa and were labelled KZN isolate; Belmont Valley near Grahamstown and were labelled Albany isolate; and Haygrove Eden farm near George and were labelled Haygrove isolate for the study. A fourth isolate made up of a crude extract of occlusion bodies (OBs) first described by Whitlock was also analysed and labelled Whitlock isolate. Occlusion bodies were extracted, purified and morphologically identified from the KZN, Albany, Haygrove and Whitlock isolates using TEM. Genomic DNA, which was extracted from the purified OBs. Using PCR, the identity of the OBs as HearNPV was confirmed. Genomic analyses were performed on HearNPV-Albany and HearNPV-KZN through genetic characterisation and comparison with other geographically distinct HearNPV genomes to confirm novelty and establish potential genetic relationships between the isolates through evolutionary distances. Full genomic sequencing of the isolated HearNPV and comparison with other geographically distinct HearNPV isolates identified genomic differences that showed that the HearNPV isolates were novel. HearNPV-Albany and HearNPV-KZN were successfully sequenced and identified as novel isolates with unique fragment patterns and unique gene sequences through deletions or insertions when compared to other geographically distinct HearNPV. This raised the potential for differences in biological activity against H. armigera larvae when tested through biological assays. HearNPV-Whit genome assembly had low quality data which resulted in many gaps and failed assembly. The biological activity of HearNPV isolates from Spain, China, South Africa and two commercial formulations were studied against the laboratory established H. armigera South African colony. The LC50 values of the different South African HearNPV isolates were established to be between 7.7 × 101 OBs.ml-1 for the most effective and 3.2 × 102 OBs.ml-1 for the least effective. The Spanish and Chinese HearNPV isolates resulted in LC50 values of 2.0 × 102 OBs.ml-1 and 1.2 × 101 OBs.ml-1 respectively. The commercial formulations resulted in the least virulence observed with an LC50 of 5.84× 102 OBs.ml-1 and 9.0 × 102 OBs.ml-1 for Helicovex® and Helicovir™ respectively. In this study, novel South African HearNPV isolates were isolated and identified. Through characterisation and bioassays against South African H. armigera populations the HearNPV isolates were shown to have different virulence in comparison to geographically distinct isolates. From this research, there is potential for development of new H. armigera biopesticides based on the novel isolates after field trial testing.
- Full Text:
Interaction between the root-feeding beetle, Longitarsus bethae (Coleoptera: Chrysomelidae) and the root-knot nematode, Meloidogyne javanica (Nematoda: Heteroderidae): Implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa
- Authors: Musedeli, Jufter
- Date: 2019
- Subjects: Insect-plant relationships , Insects -- Host plants , Flea beetles , Symbiosis , Longitarsus , Chrysomelidae , Lantana camara -- Biological control -- South Africa , Heteroderidae , Root-knot nematodes , Weeds -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71130 , vital:29788
- Description: Plants often are simultaneously attacked by several herbivores that can affect each other’s performance, and their interaction may affect their host plant fitness. The current study was conducted to determine the interaction between the root-feeding beetle, Longitarsus bethae Savini & Escalona (Coleoptera: Chrysomelidae) and a root-knot nematode, Meloidogyne javanica (Treub) Chitwood (Tylenchida: Heteroderidae), with implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa. The studies were conducted under quarantine conditions at the Agricultural Research Council-PHP, Roodeplaat, Pretoria, South Africa. Specifically, the study determined; (i) whether root damage by the flea beetle enhanced infection by M. javanica, (ii) whether L. camara roots infected with the nematode enhanced the performance of the beetle, (iii) whether single or combined effect of the two organisms (i.e. L. bethae and M. javanica) had an overall effect on the growth and biomass of their shared host, L. camara, and (iv) the susceptibility of 10 L. camara varieties that are commonly found in South Africa to M. javanica. The study found that galling on the roots of L. camara by the nematode occurs at the highest inoculation of 300 eggs of L. bethae per plant, and no galling occurred at inoculation of 200 eggs per plant and below. The findings also showed that L. bethae performed better on M. javanica-infected than on healthy L. camara roots, and that more L. bethae adult progeny with slightly bigger body size emerged from M. javanica-infected, than from healthy plants. Fresh weight (galls) of plant roots from treatments where both species (i.e., L. bethae and M. javanica) were combined was significantly higher than that from plants infected with the nematode only, suggesting that the combination of both species induces more galling than the nematode does alone. The above-ground dry biomass was significantly lower both in combined and M. javanica only treatments, than in L. bethae only treatment. The study also found that selected L. camara varieties were infected with M. javanica, albeit at varying degrees of infection. Among the 10 L. camara varieties, Orange Red OR 015 was the most susceptible. Other susceptible varieties included Light Pink 009 LP, Total Pink 021 TP and Dark Pink 018 DP, and these, together with variety Orange Red OR 015, constituted 40% of the L. camara varieties evaluated in the current study. Fifty percent of the varieties displayed slight to moderate susceptibility to M. javanica, while 10% displayed lack of susceptibility. The study concluded that the symbiotic relationship between L. bethae and M. javanica was mutual, resulting in increase in the fitness of the beetle. The combined herbivory by L. bethae and M. javanica was also found to be additive on one of the most common varieties of L. camara in South Africa, and therefore co-infestation by both species might enhance the biological control of this weed in South Africa. The study further concluded that the suitability of some invasive L. camara cultivars such as Light Pink 009 LP and Orange Red 015 OR for M. javanica, might also contribute towards biological control of this weed in South Africa, particularly in areas where the two herbivores species co-exist.
- Full Text:
- Authors: Musedeli, Jufter
- Date: 2019
- Subjects: Insect-plant relationships , Insects -- Host plants , Flea beetles , Symbiosis , Longitarsus , Chrysomelidae , Lantana camara -- Biological control -- South Africa , Heteroderidae , Root-knot nematodes , Weeds -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71130 , vital:29788
- Description: Plants often are simultaneously attacked by several herbivores that can affect each other’s performance, and their interaction may affect their host plant fitness. The current study was conducted to determine the interaction between the root-feeding beetle, Longitarsus bethae Savini & Escalona (Coleoptera: Chrysomelidae) and a root-knot nematode, Meloidogyne javanica (Treub) Chitwood (Tylenchida: Heteroderidae), with implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa. The studies were conducted under quarantine conditions at the Agricultural Research Council-PHP, Roodeplaat, Pretoria, South Africa. Specifically, the study determined; (i) whether root damage by the flea beetle enhanced infection by M. javanica, (ii) whether L. camara roots infected with the nematode enhanced the performance of the beetle, (iii) whether single or combined effect of the two organisms (i.e. L. bethae and M. javanica) had an overall effect on the growth and biomass of their shared host, L. camara, and (iv) the susceptibility of 10 L. camara varieties that are commonly found in South Africa to M. javanica. The study found that galling on the roots of L. camara by the nematode occurs at the highest inoculation of 300 eggs of L. bethae per plant, and no galling occurred at inoculation of 200 eggs per plant and below. The findings also showed that L. bethae performed better on M. javanica-infected than on healthy L. camara roots, and that more L. bethae adult progeny with slightly bigger body size emerged from M. javanica-infected, than from healthy plants. Fresh weight (galls) of plant roots from treatments where both species (i.e., L. bethae and M. javanica) were combined was significantly higher than that from plants infected with the nematode only, suggesting that the combination of both species induces more galling than the nematode does alone. The above-ground dry biomass was significantly lower both in combined and M. javanica only treatments, than in L. bethae only treatment. The study also found that selected L. camara varieties were infected with M. javanica, albeit at varying degrees of infection. Among the 10 L. camara varieties, Orange Red OR 015 was the most susceptible. Other susceptible varieties included Light Pink 009 LP, Total Pink 021 TP and Dark Pink 018 DP, and these, together with variety Orange Red OR 015, constituted 40% of the L. camara varieties evaluated in the current study. Fifty percent of the varieties displayed slight to moderate susceptibility to M. javanica, while 10% displayed lack of susceptibility. The study concluded that the symbiotic relationship between L. bethae and M. javanica was mutual, resulting in increase in the fitness of the beetle. The combined herbivory by L. bethae and M. javanica was also found to be additive on one of the most common varieties of L. camara in South Africa, and therefore co-infestation by both species might enhance the biological control of this weed in South Africa. The study further concluded that the suitability of some invasive L. camara cultivars such as Light Pink 009 LP and Orange Red 015 OR for M. javanica, might also contribute towards biological control of this weed in South Africa, particularly in areas where the two herbivores species co-exist.
- Full Text:
Post-release evaluation of Megamelus scutellaris Berg. (hemiptera: delphacidae): a biological control agent of water hyacinth Eichhornia crassipes (Mart.) Solms-Laub (Pontederiaceae) in South Africa
- Authors: Miller, Benjamin Erich
- Date: 2019
- Subjects: Megamelus scutellaris Berg. , Delphacidae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92330 , vital:30710
- Description: Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) is a free-floating aquatic macrophyte from South America that was introduced to South Africa in the 1900s for its attractive ornamental flowers. The plant was classified as a serious invader in the country in the 1970s, eventually becoming the worst invasive aquatic plant in South Africa. Biological control is widely regarded as the most effective method of managing water hyacinth, as it is ecologically safe, cost-effective, and self-sustaining. To date, nine biological control agents have been released in South Africa against water hyacinth, including eight arthropods and a pathogen. Due to the cumulative effects of highly eutrophic waterbodies, which mitigate the damage caused by biological control, and the cold winters which inhibit the rate of biological control agent population build up, South Africa currently has more biological control agents released on water hyacinth than anywhere else in the world. The need for a cold-tolerant agent that can reproduce and develop quickly, while still being damaging to water hyacinth in eutrophic systems, led to the introduction of the most recently released water hyacinth biological control agent, the planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae), which was initially collected from Argentina. This thesis formed the first post-release evaluation of M. scutellaris since its release in South Africa in 2013. It included a greenhouse experiment to measure the agent’s feeding damage in relation to different nutrient levels and stocking rates, as well as a field component to evaluate both the post-winter recovery of M. scutellaris, and a nationwide survey to measure the establishment of the agent around the country in relation to climate, water quality, and plant health. In the greenhouse experiment, the feeding damage was quantified using measurements of plant growth parameters and chlorophyll fluorometry. It was found that, like other biological control agents of water hyacinth, M. scutellaris was most damaging when released in high numbers on plants grown at medium nutrient levels, and less effective on plants grown at elevated nutrient levels. A water hyacinth infestation on the Kubusi River was selected for the evaluation of the post-winter recovery of M. scutellaris. The Kubusi River is both the first site where M. scutellaris was released, and the coldest site where water hyacinth biological control agents have established successfully in South Africa. Monthly visits tracking seasonal plant health characteristics and agent population densities indicated that the populations of M. scutellaris were impacted most significantly by the season. Low temperatures led to the water hyacinth plants being of poor quality during the winter, which had a subsequent negative effect on the agent populations. The agents could only fully recover by late summer, which meant that the plants were without any significant biological control through the initial phases of the growing season, when they were most vulnerable, and a significant lag-phase occurred between the recovery of the plants and the recovery of the agent population after the winter bottleneck. A survey of all sites where M. scutellaris had been released in South Africa yielded 16 sites where the agents had successfully established, having survived at least one full winter. Among these sites were four sites where the agents were found without them having been released, indicating that they can disperse unaided to new sites. The temperature was a major factor responsible for the success or failure of establishment, with very few agents surviving in the hot areas of South Africa or in areas with a high frost incidence. The density of M. scutellaris was higher in nutrient-rich water, and on plants with more leaves, suggesting that the quality of the plants also contributed to establishment. The results of this thesis showed that M. scutellaris is able to establish successfully in South Africa, and that the agents are capable of causing significant damage to water hyacinth, making it a promising addition to the biological control programme. Novel methods of measuring subtle insect feeding damage in plants and quantifying agent populations are also discussed, along with suggestions for the future implementation of M. scutellaris in South Africa.
- Full Text:
- Authors: Miller, Benjamin Erich
- Date: 2019
- Subjects: Megamelus scutellaris Berg. , Delphacidae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92330 , vital:30710
- Description: Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) is a free-floating aquatic macrophyte from South America that was introduced to South Africa in the 1900s for its attractive ornamental flowers. The plant was classified as a serious invader in the country in the 1970s, eventually becoming the worst invasive aquatic plant in South Africa. Biological control is widely regarded as the most effective method of managing water hyacinth, as it is ecologically safe, cost-effective, and self-sustaining. To date, nine biological control agents have been released in South Africa against water hyacinth, including eight arthropods and a pathogen. Due to the cumulative effects of highly eutrophic waterbodies, which mitigate the damage caused by biological control, and the cold winters which inhibit the rate of biological control agent population build up, South Africa currently has more biological control agents released on water hyacinth than anywhere else in the world. The need for a cold-tolerant agent that can reproduce and develop quickly, while still being damaging to water hyacinth in eutrophic systems, led to the introduction of the most recently released water hyacinth biological control agent, the planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae), which was initially collected from Argentina. This thesis formed the first post-release evaluation of M. scutellaris since its release in South Africa in 2013. It included a greenhouse experiment to measure the agent’s feeding damage in relation to different nutrient levels and stocking rates, as well as a field component to evaluate both the post-winter recovery of M. scutellaris, and a nationwide survey to measure the establishment of the agent around the country in relation to climate, water quality, and plant health. In the greenhouse experiment, the feeding damage was quantified using measurements of plant growth parameters and chlorophyll fluorometry. It was found that, like other biological control agents of water hyacinth, M. scutellaris was most damaging when released in high numbers on plants grown at medium nutrient levels, and less effective on plants grown at elevated nutrient levels. A water hyacinth infestation on the Kubusi River was selected for the evaluation of the post-winter recovery of M. scutellaris. The Kubusi River is both the first site where M. scutellaris was released, and the coldest site where water hyacinth biological control agents have established successfully in South Africa. Monthly visits tracking seasonal plant health characteristics and agent population densities indicated that the populations of M. scutellaris were impacted most significantly by the season. Low temperatures led to the water hyacinth plants being of poor quality during the winter, which had a subsequent negative effect on the agent populations. The agents could only fully recover by late summer, which meant that the plants were without any significant biological control through the initial phases of the growing season, when they were most vulnerable, and a significant lag-phase occurred between the recovery of the plants and the recovery of the agent population after the winter bottleneck. A survey of all sites where M. scutellaris had been released in South Africa yielded 16 sites where the agents had successfully established, having survived at least one full winter. Among these sites were four sites where the agents were found without them having been released, indicating that they can disperse unaided to new sites. The temperature was a major factor responsible for the success or failure of establishment, with very few agents surviving in the hot areas of South Africa or in areas with a high frost incidence. The density of M. scutellaris was higher in nutrient-rich water, and on plants with more leaves, suggesting that the quality of the plants also contributed to establishment. The results of this thesis showed that M. scutellaris is able to establish successfully in South Africa, and that the agents are capable of causing significant damage to water hyacinth, making it a promising addition to the biological control programme. Novel methods of measuring subtle insect feeding damage in plants and quantifying agent populations are also discussed, along with suggestions for the future implementation of M. scutellaris in South Africa.
- Full Text:
- «
- ‹
- 1
- ›
- »