Tuning the redox properties of metalloporphyrin-and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols
- Bedioui, Fethi, Griveau, Sophie, Nyokong, Tebello, Appleby, A John, Caro, Claudia A, Gulppi, Miguel, Ochoa, Gonzalo, Zagal, José H
- Authors: Bedioui, Fethi , Griveau, Sophie , Nyokong, Tebello , Appleby, A John , Caro, Claudia A , Gulppi, Miguel , Ochoa, Gonzalo , Zagal, José H
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/283988 , vital:56009 , xlink:href="https://doi.org/10.1039/B618767F"
- Description: In this work we discuss different approaches for achieving electrodes modified with N4 macrocyclic complexes for the catalysis of the electrochemical oxidation of thiols. These approaches involve adsorption, electropolymerization and molecular anchoring using self assembled monolayers. We also discuss the parameters that determine the reactivity of these complexes. Catalytic activity is associated with the nature of the central metal, redox potentials and Hammett parameters of substituents on the ligand. Correlations between catalytic activity (log i at constant E) and the redox potential of catalysts for complexes of Cr, Mn, Fe, Co, Ni and Cu are linear with an increase of activity for more positive redox potentials. For a great variety complexes bearing the same metal center (Co) correlations between log i and Eo′ of the Co(II)/Co(I) couple have the shape of an unsymmetric volcano. This indicates that the potential of the Co(II)/Co(I) couple can be tuned using the appropiate ligand to achieve maximum catalytic activity. Maximum activity probably corresponds to a ΔG of adsorption of the thiol on the Co center equal to zero, and to a coverage of active sites by the thiol equal to 0.5.
- Full Text:
- Date Issued: 2007
- Authors: Bedioui, Fethi , Griveau, Sophie , Nyokong, Tebello , Appleby, A John , Caro, Claudia A , Gulppi, Miguel , Ochoa, Gonzalo , Zagal, José H
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/283988 , vital:56009 , xlink:href="https://doi.org/10.1039/B618767F"
- Description: In this work we discuss different approaches for achieving electrodes modified with N4 macrocyclic complexes for the catalysis of the electrochemical oxidation of thiols. These approaches involve adsorption, electropolymerization and molecular anchoring using self assembled monolayers. We also discuss the parameters that determine the reactivity of these complexes. Catalytic activity is associated with the nature of the central metal, redox potentials and Hammett parameters of substituents on the ligand. Correlations between catalytic activity (log i at constant E) and the redox potential of catalysts for complexes of Cr, Mn, Fe, Co, Ni and Cu are linear with an increase of activity for more positive redox potentials. For a great variety complexes bearing the same metal center (Co) correlations between log i and Eo′ of the Co(II)/Co(I) couple have the shape of an unsymmetric volcano. This indicates that the potential of the Co(II)/Co(I) couple can be tuned using the appropiate ligand to achieve maximum catalytic activity. Maximum activity probably corresponds to a ΔG of adsorption of the thiol on the Co center equal to zero, and to a coverage of active sites by the thiol equal to 0.5.
- Full Text:
- Date Issued: 2007
Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes
- Obirai, Joe, Rodrigues, Nazaré Pereira, Bedioui, Fethi, Nyokong, Tebello
- Authors: Obirai, Joe , Rodrigues, Nazaré Pereira , Bedioui, Fethi , Nyokong, Tebello
- Date: 2003
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304852 , vital:58496 , xlink:href="https://0-doi.org.wam.seals.ac.za/10.1142/S1088424603000641"
- Description: A new family of pyrrole substituted metallophthalocyanine complexes, namely cobalt(II), iron(II), manganese(III), nickel(II) and zinc(II) tetrakis-4-(pyrrol-1-yl)phenoxy phthalocyanines (noted as M(TPhPyrPc), where M is the metallic cation) have been synthesized and fully characterized. In particular, the UV-visible spectra of the iron and nickel complexes showed extensive aggregation even at low concentrations. The cyclic voltammetry of the cobalt, iron and manganese complexes showed three to four redox couples assigned to metal and ring based processes. Spectroelectrochemistry of the manganese derivative confirmed that the synthesized complex is MnIII(TPhPyrPc-2) and that the reduction of MnII(TPhPyrPc-2) to be centred on the ring and rather than on the metal, forming the MnII(TPhPyrPc-4) species. Also, the electrochemical polymerization of these newly synthesized pyrrole-substituted phthalocyanines has been demonstrated in the case of the cobalt complex and the electrocatalytic activity of the obtained film has been tested towards the oxidation of L-cysteine.
- Full Text:
- Date Issued: 2003
- Authors: Obirai, Joe , Rodrigues, Nazaré Pereira , Bedioui, Fethi , Nyokong, Tebello
- Date: 2003
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304852 , vital:58496 , xlink:href="https://0-doi.org.wam.seals.ac.za/10.1142/S1088424603000641"
- Description: A new family of pyrrole substituted metallophthalocyanine complexes, namely cobalt(II), iron(II), manganese(III), nickel(II) and zinc(II) tetrakis-4-(pyrrol-1-yl)phenoxy phthalocyanines (noted as M(TPhPyrPc), where M is the metallic cation) have been synthesized and fully characterized. In particular, the UV-visible spectra of the iron and nickel complexes showed extensive aggregation even at low concentrations. The cyclic voltammetry of the cobalt, iron and manganese complexes showed three to four redox couples assigned to metal and ring based processes. Spectroelectrochemistry of the manganese derivative confirmed that the synthesized complex is MnIII(TPhPyrPc-2) and that the reduction of MnII(TPhPyrPc-2) to be centred on the ring and rather than on the metal, forming the MnII(TPhPyrPc-4) species. Also, the electrochemical polymerization of these newly synthesized pyrrole-substituted phthalocyanines has been demonstrated in the case of the cobalt complex and the electrocatalytic activity of the obtained film has been tested towards the oxidation of L-cysteine.
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »