Visible light responsive TiO2-graphene oxide nanosheets-Zn phthalocyanine ternary heterojunction assisted photoelectrocatalytic degradation of Orange G
- Nwahara, Nnamdi, Adeniyi, Omotayo, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nwahara, Nnamdi , Adeniyi, Omotayo , Mashazi, Philani N , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185446 , vital:44387 , xlink:href="https://doi.org/10.1016/j.jphotochem.2021.113291"
- Description: Herein, we report on the successful fabrication of a visible light-responsive TiO2 - graphene oxide nanosheets – Zn phthalocyanine (TiO2@GONS@ZnPc) ternary structure for the photoelectrochemical degradation of Orange G azo dye. The characterization of TiO2@GONS@ZnPc composite was achieved using various spectroscopic and microscopic techniques. Our results show that the TiO2@GONS@ZnPc surface hybrid heterojunction promotes charge separation and electron migration, significantly improving the degradation efficiency with an applied potential. For the first time, we show the existence of a non-radical activation route for persulfate (PS) using such π electron-rich ZnPc-GONS catalysts. The degradation kinetics were found to follow pseudo first order kinetics. Electron spin resonance analyses suggested that neither hydroxyl radicals nor sulfate radicals were produced therein, and therefore were not responsible for the persulfate-driven oxidation of the OG dye. These findings suggest that both which GONS and ZnPc play a critical role in mediating the eventual charge transfer mediated PS activation. The results illustrate the remarkable capacity of the TiO2@GONS@ZnPc composite to rapidly degrade Orange G by a coupled TiO2@GONS@ZnPc-persulfate system.
- Full Text:
- Authors: Nwahara, Nnamdi , Adeniyi, Omotayo , Mashazi, Philani N , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185446 , vital:44387 , xlink:href="https://doi.org/10.1016/j.jphotochem.2021.113291"
- Description: Herein, we report on the successful fabrication of a visible light-responsive TiO2 - graphene oxide nanosheets – Zn phthalocyanine (TiO2@GONS@ZnPc) ternary structure for the photoelectrochemical degradation of Orange G azo dye. The characterization of TiO2@GONS@ZnPc composite was achieved using various spectroscopic and microscopic techniques. Our results show that the TiO2@GONS@ZnPc surface hybrid heterojunction promotes charge separation and electron migration, significantly improving the degradation efficiency with an applied potential. For the first time, we show the existence of a non-radical activation route for persulfate (PS) using such π electron-rich ZnPc-GONS catalysts. The degradation kinetics were found to follow pseudo first order kinetics. Electron spin resonance analyses suggested that neither hydroxyl radicals nor sulfate radicals were produced therein, and therefore were not responsible for the persulfate-driven oxidation of the OG dye. These findings suggest that both which GONS and ZnPc play a critical role in mediating the eventual charge transfer mediated PS activation. The results illustrate the remarkable capacity of the TiO2@GONS@ZnPc composite to rapidly degrade Orange G by a coupled TiO2@GONS@ZnPc-persulfate system.
- Full Text:
The photodynamic antimicrobial chemotherapy of Stapphylococcus aureus using an asymmetrical zinc phthalocyanine conjugated to silver and iron oxide based nanoparticles
- Mapukata, Sivuyisiwe, Nwahara, Nnamdi, Nyokong, Tebello
- Authors: Mapukata, Sivuyisiwe , Nwahara, Nnamdi , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186078 , vital:44461 , xlink:href="https://doi.org/10.1016/j.jphotochem.2020.112813"
- Description: The synthesis and characterisation of asymmetrical zinc(II) 2(3)-mono-isophthalic acid-9(10),16(17),23 (24)-tri (tert-butylphenoxy) phthalocyanine (complex 4) are reported. The phthalocyanine is conjugated to cysteamine capped silver nanoparticles (Cys-Ag NPs), amine functionalised iron oxide magnetic nanoparticles (NH2-Fe3O4 NPs) and a core-shell composite of the two (Cys-Fe3O4@Ag) via amide bonds. The photo-physico-chemical properties of complex 4 and its respective nanoconjugates (4-Ag, 4-Fe3O4 NPs and 4-Fe3O4@Ag NPs) are also reported. The nanoconjugates showed improved triplet and singlet oxygen quantum yields compared to complex 4. The antibacterial activity of complex 4 and its nanoconjugates were also evaluated on S. aureus wherein their activity was found to be mainly visible light driven with the best catalyst being 4-Fe3O4@Ag. The work therefore demonstrates the feasibility of phthalocyanine-nanoparticle based compounds as potential agents in real life antibacterial treatment
- Full Text:
- Authors: Mapukata, Sivuyisiwe , Nwahara, Nnamdi , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186078 , vital:44461 , xlink:href="https://doi.org/10.1016/j.jphotochem.2020.112813"
- Description: The synthesis and characterisation of asymmetrical zinc(II) 2(3)-mono-isophthalic acid-9(10),16(17),23 (24)-tri (tert-butylphenoxy) phthalocyanine (complex 4) are reported. The phthalocyanine is conjugated to cysteamine capped silver nanoparticles (Cys-Ag NPs), amine functionalised iron oxide magnetic nanoparticles (NH2-Fe3O4 NPs) and a core-shell composite of the two (Cys-Fe3O4@Ag) via amide bonds. The photo-physico-chemical properties of complex 4 and its respective nanoconjugates (4-Ag, 4-Fe3O4 NPs and 4-Fe3O4@Ag NPs) are also reported. The nanoconjugates showed improved triplet and singlet oxygen quantum yields compared to complex 4. The antibacterial activity of complex 4 and its nanoconjugates were also evaluated on S. aureus wherein their activity was found to be mainly visible light driven with the best catalyst being 4-Fe3O4@Ag. The work therefore demonstrates the feasibility of phthalocyanine-nanoparticle based compounds as potential agents in real life antibacterial treatment
- Full Text:
- «
- ‹
- 1
- ›
- »