Vernacular sound technologies: experimenting with reverb in isiXhosa choral recordings
- Authors: Ncanywa, Sibusiso
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/432147 , vital:72846
- Description: Access restricted. Expected release date 2025. , Thesis (MMus) -- Faculty of Humanities, Music and Musicology, 2023
- Full Text:
- Authors: Ncanywa, Sibusiso
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/432147 , vital:72846
- Description: Access restricted. Expected release date 2025. , Thesis (MMus) -- Faculty of Humanities, Music and Musicology, 2023
- Full Text:
A statistical study of travelling ionospheric disturbances over the African-European and American sectors
- Authors: Thaganyana, Golekamang Piet
- Date: 2023-03-31
- Subjects: Sudden ionospheric disturbances , Global Positioning System , Gravitational waves , Geomagnetic storm , Ionosphere
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422541 , vital:71956 , DOI 10.21504/10962/422543
- Description: This research presents a long-term statistical study of travelling ionospheric disturbances (TIDs) of low- and high-latitude origin over the American and African-European sectors between 2010 and 2018. The TIDs of low latitude origin (hereafter known as poleward TIDs) were studied in both quiet and disturbed conditions, whereas the equatorward TIDs were only studied during quiet conditions. The Kp > 4 and Dst_ -50 nT was used as a criterion for geomagnetic disturbed conditions, while the four geomagnetically quiet days were selected each month based on Kp < 3. Observations of TIDs are made using Global Navigational Satellite Systems (GNSS) total electron content derived data. During quiet conditions, seven and two transhemispheric TIDs were identified over the African-European and American sectors, respectively. The observed TIDs originated from the wintertime hemisphere and propagated into the summertime hemisphere. The horizontal velocity, periods, and horizontal wavelengths of TIDs are in range of cH = 120-274 m/s, 48-80 min and _H = 379-1104 km, respectively. These quiet-time equatorward TIDs have been associated with tertiary gravity waves (GWs) from the dissipation of secondary GWs which are in turn generated from the dissipation of mountain waves (MWs) as a result of excited orographic forcing. The poleward TIDs during geomagnetically quiet conditions over the African and American sectors occur mainly during local daytime. Poleward TIDs were observed mostly in the African-European sector than the American sector. Their horizontal propagation velocities and periods range between 129-280 m/s and 39-70 min over African-European and American sectors. Although the mechanisms responsible for launching quiet-time poleward TIDs have not been established in this study, lower atmospheric processes such as convection systems, sudden stratospheric warming and cold weather fronts may have a role in their generation. During geomagnetic storms in the African sector, almost all poleward TIDs (with the exception of two cases) during the main phase were large-scale with horizontal velocities and periods ranging from 250-503 m/s and 30 min to 2 hours. During recovery phase, poleward TIDs fall under the category of medium scale. In the American sector, the majority of poleward TIDs occurred during the storm's main phase, as opposed to the African-European sector, which experienced a significant number of poleward TIDs during the recovery phase. The periods and horizontal velocities of TIDs range from 45 min-1.5 h and 180-296 m/s during main phase. During the recovery phase, the horizontal velocity and period range from 177-271 m/s and 40-1.5 h, respectively. Overall, it has been shown that statistically, changes in equatorial electrodynamics related to enhanced eastward electric _eld and hence increased equatorial electrojet (vertical E_B drift) correlates highly with the reported poleward TIDs. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Authors: Thaganyana, Golekamang Piet
- Date: 2023-03-31
- Subjects: Sudden ionospheric disturbances , Global Positioning System , Gravitational waves , Geomagnetic storm , Ionosphere
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422541 , vital:71956 , DOI 10.21504/10962/422543
- Description: This research presents a long-term statistical study of travelling ionospheric disturbances (TIDs) of low- and high-latitude origin over the American and African-European sectors between 2010 and 2018. The TIDs of low latitude origin (hereafter known as poleward TIDs) were studied in both quiet and disturbed conditions, whereas the equatorward TIDs were only studied during quiet conditions. The Kp > 4 and Dst_ -50 nT was used as a criterion for geomagnetic disturbed conditions, while the four geomagnetically quiet days were selected each month based on Kp < 3. Observations of TIDs are made using Global Navigational Satellite Systems (GNSS) total electron content derived data. During quiet conditions, seven and two transhemispheric TIDs were identified over the African-European and American sectors, respectively. The observed TIDs originated from the wintertime hemisphere and propagated into the summertime hemisphere. The horizontal velocity, periods, and horizontal wavelengths of TIDs are in range of cH = 120-274 m/s, 48-80 min and _H = 379-1104 km, respectively. These quiet-time equatorward TIDs have been associated with tertiary gravity waves (GWs) from the dissipation of secondary GWs which are in turn generated from the dissipation of mountain waves (MWs) as a result of excited orographic forcing. The poleward TIDs during geomagnetically quiet conditions over the African and American sectors occur mainly during local daytime. Poleward TIDs were observed mostly in the African-European sector than the American sector. Their horizontal propagation velocities and periods range between 129-280 m/s and 39-70 min over African-European and American sectors. Although the mechanisms responsible for launching quiet-time poleward TIDs have not been established in this study, lower atmospheric processes such as convection systems, sudden stratospheric warming and cold weather fronts may have a role in their generation. During geomagnetic storms in the African sector, almost all poleward TIDs (with the exception of two cases) during the main phase were large-scale with horizontal velocities and periods ranging from 250-503 m/s and 30 min to 2 hours. During recovery phase, poleward TIDs fall under the category of medium scale. In the American sector, the majority of poleward TIDs occurred during the storm's main phase, as opposed to the African-European sector, which experienced a significant number of poleward TIDs during the recovery phase. The periods and horizontal velocities of TIDs range from 45 min-1.5 h and 180-296 m/s during main phase. During the recovery phase, the horizontal velocity and period range from 177-271 m/s and 40-1.5 h, respectively. Overall, it has been shown that statistically, changes in equatorial electrodynamics related to enhanced eastward electric _eld and hence increased equatorial electrojet (vertical E_B drift) correlates highly with the reported poleward TIDs. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
Genetic connectivity of the roundjaw bonefish (Albula glossodonta) in the Southwest Indian Ocean
- Talma, Sheena Claudia Aisa Lydie
- Authors: Talma, Sheena Claudia Aisa Lydie
- Date: 2021-10-29
- Subjects: Bonefish Mauritius , Bonefish Seychelles , Bonefish Genetics , Bonefish Habitat , Bonefish Geographical distribution , Bonefish Larvae Dispersal , Genetic markers , Cytochrome b , Fish populations Mauritius , Fish populations Seychelles , Marine ecotourism , Saltwater fly fishing , Bonefish fisheries Catch effort
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192174 , vital:45202
- Description: The Southwest Indian Ocean (SWIO) islands of Mauritius and Seychelles are both highly dependent on tourism and fisheries for their economies. One of the growing ecotourism sectors is saltwater fly fishing, an industry based on catch-and-release fishing for a host of species, including bonefishes. Bonefishes (Albula spp.) have received significant research attention in the Pacific and Atlantic Oceans, with only sporadic research conducted in the Indian Ocean. My project aimed to investigate the genetic connectivity of the roundjaw bonefish (Albula glossodonta) in two island states (Seychelles and Mauritius) within the SWIO using a mitochondrial genetic marker (cyt-b) and next generation sequencing (ddRADseq). Samples collected were grouped based on their spatial distribution. The Seychelles consisted of four island groups (Inner Island Group, Aldabra Group, Amirantes and Alphonse Group, and Farquhar Group) whereas Mauritius was represented by one island group (Saint Brandon). Genetic analyses were undertaken between and within each of these groups. Mitochondrial cytochrome-b identified two species of bonefish: Albula glossodonta and Albula oligolepis; the latter was only genetically identified from the Inner Island Group. I hypothesise that this is due to habitat partitioning, with A. oligolepis being a deeper dwelling bonefish species compared to A. glossodonta, which occupies shallow water habitats such as sand flats, atoll lagoons and reef flats. Neutral SNP loci revealed a panmictic pattern of distribution for A. glossodonta throughout the Seychelles Island groups but showed a pattern of weak structure between Seychelles and Mauritius. Genetic diversity indices such as allelic richness, showed low diversity across the sampling sites (AR range: 1.761-1.889). Population structure tests such as pairwise FST showed low but significant population structure. The highest FST indices were recorded between the Aldabra and Farquhar Groups, as well as the Aldabra and Saint Brandon Groups (0.044 ± 0.000 and 0.040 ± 0.000, respectively). Descriptive tests such as PCA and DAPC showed similar trends, whereby Saint Brandon clustered separately from the other samples from the Seychelles Island groups. However, these trends were Abstract seen at very low variations (PCA axes 1 and 2 accounted for only 2.0 and 1.9 % of the total variation, respectively). A population assignment test grouped the individuals as one ancestral population. A spatial principal component analysis showed that Saint Brandon was dissimilar to the Seychelles Island groups. Like other Elopomorph species, bonefishes have leptocephalus larvae capable of long-distance dispersal which may explain the well-mixed genetic population observed within the Seychelles islands. Although currents within the Indian Ocean, especially on a mesoscale, are not well understood, the South Equatorial Current likely facilitates connectivity between the Seychelles islands while also limiting gene flow between Seychelles and Mauritius. Understanding population structure is important for informing the appropriate management and conservation strategies, especially in oceanic nations where data informing important industries like tourism and fisheries are often limited. The bonefish fly fishing industry is well-known to be a lucrative sector, generating, for example US$ 1.4 million a year in the Bahamas. This study recognised that there are numerous knowledge gaps relevant to the bonefish industry that need to be addressed, including: 1) understanding the socio-economic importance of fly fishing to island states like Seychelles, 2) estimating the abundance and species distribution of bonefishes within Seychelles, 3) understanding effectiveness of MPAs for recreational fishery species like bonefish and, lastly, 4) generating more fishery-relevant biological information on the heavily targeted fly fishing species within Seychelles. These needs must be met to inform management plans and to better manage the fly fishing ventures that target species like bonefish. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2021
- Full Text:
- Authors: Talma, Sheena Claudia Aisa Lydie
- Date: 2021-10-29
- Subjects: Bonefish Mauritius , Bonefish Seychelles , Bonefish Genetics , Bonefish Habitat , Bonefish Geographical distribution , Bonefish Larvae Dispersal , Genetic markers , Cytochrome b , Fish populations Mauritius , Fish populations Seychelles , Marine ecotourism , Saltwater fly fishing , Bonefish fisheries Catch effort
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192174 , vital:45202
- Description: The Southwest Indian Ocean (SWIO) islands of Mauritius and Seychelles are both highly dependent on tourism and fisheries for their economies. One of the growing ecotourism sectors is saltwater fly fishing, an industry based on catch-and-release fishing for a host of species, including bonefishes. Bonefishes (Albula spp.) have received significant research attention in the Pacific and Atlantic Oceans, with only sporadic research conducted in the Indian Ocean. My project aimed to investigate the genetic connectivity of the roundjaw bonefish (Albula glossodonta) in two island states (Seychelles and Mauritius) within the SWIO using a mitochondrial genetic marker (cyt-b) and next generation sequencing (ddRADseq). Samples collected were grouped based on their spatial distribution. The Seychelles consisted of four island groups (Inner Island Group, Aldabra Group, Amirantes and Alphonse Group, and Farquhar Group) whereas Mauritius was represented by one island group (Saint Brandon). Genetic analyses were undertaken between and within each of these groups. Mitochondrial cytochrome-b identified two species of bonefish: Albula glossodonta and Albula oligolepis; the latter was only genetically identified from the Inner Island Group. I hypothesise that this is due to habitat partitioning, with A. oligolepis being a deeper dwelling bonefish species compared to A. glossodonta, which occupies shallow water habitats such as sand flats, atoll lagoons and reef flats. Neutral SNP loci revealed a panmictic pattern of distribution for A. glossodonta throughout the Seychelles Island groups but showed a pattern of weak structure between Seychelles and Mauritius. Genetic diversity indices such as allelic richness, showed low diversity across the sampling sites (AR range: 1.761-1.889). Population structure tests such as pairwise FST showed low but significant population structure. The highest FST indices were recorded between the Aldabra and Farquhar Groups, as well as the Aldabra and Saint Brandon Groups (0.044 ± 0.000 and 0.040 ± 0.000, respectively). Descriptive tests such as PCA and DAPC showed similar trends, whereby Saint Brandon clustered separately from the other samples from the Seychelles Island groups. However, these trends were Abstract seen at very low variations (PCA axes 1 and 2 accounted for only 2.0 and 1.9 % of the total variation, respectively). A population assignment test grouped the individuals as one ancestral population. A spatial principal component analysis showed that Saint Brandon was dissimilar to the Seychelles Island groups. Like other Elopomorph species, bonefishes have leptocephalus larvae capable of long-distance dispersal which may explain the well-mixed genetic population observed within the Seychelles islands. Although currents within the Indian Ocean, especially on a mesoscale, are not well understood, the South Equatorial Current likely facilitates connectivity between the Seychelles islands while also limiting gene flow between Seychelles and Mauritius. Understanding population structure is important for informing the appropriate management and conservation strategies, especially in oceanic nations where data informing important industries like tourism and fisheries are often limited. The bonefish fly fishing industry is well-known to be a lucrative sector, generating, for example US$ 1.4 million a year in the Bahamas. This study recognised that there are numerous knowledge gaps relevant to the bonefish industry that need to be addressed, including: 1) understanding the socio-economic importance of fly fishing to island states like Seychelles, 2) estimating the abundance and species distribution of bonefishes within Seychelles, 3) understanding effectiveness of MPAs for recreational fishery species like bonefish and, lastly, 4) generating more fishery-relevant biological information on the heavily targeted fly fishing species within Seychelles. These needs must be met to inform management plans and to better manage the fly fishing ventures that target species like bonefish. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2021
- Full Text:
An investigation into the role of lesson study in developing teachers’ mathematics content and pedagogical content knowledge
- Authors: Kgothego, Naomi Ntsae
- Date: 2021-04
- Subjects: Mathematics -- Study and teaching (Elementary) -- South Africa -- Bojanala Platinum District Municipality , Pedagogical content knowledge , Lesson planning -- South Africa -- Bojanala Platinum District Municipality , Mathematics teachers -- Training of -- South Africa -- Bojanala Platinum District Municipality , South Africa. Department of Basic Education , Kokusai Kyōryoku Jigyōdan
- Language: English
- Type: thesis , text , Masters , MEd
- Identifier: http://hdl.handle.net/10962/178019 , vital:42899
- Description: Results of international assessments conducted with South African learners, both in primary and secondary schools, suggest that South African learners underperform in mathematics (Spaull, 2013). While there are numerous explanations for this, one of the key explanations is that teachers are deemed to have inadequate knowledge of both mathematics content and pedagogy. Poor content and pedagogical knowledge are indications that teachers are not adequately trained to teach mathematics (Green, 2011). To improve teachers' content and pedagogical knowledge, well-planned and researched professional development programmes need to be put in place. Current professional development opportunities that centre on workshops are not working as they provide little opportunity for teachers to connect the workshop content to the contexts in which they teach. Through a collaboration between the Department of Basic Education (DBE) and Japan International Corporation Agency (JICA), the Lesson Study approach is being introduced to support teachers' professional development. This research seeks to research this approach within the context of Foundation Phase mathematics education. The research asks: How does Lesson Study contribute to the development of teachers' mathematics content and pedagogical content knowledge? Two sub-questions were developed to support the main question: • What mathematics content knowledge do teachers develop as the engage in LS? • What pedagogical content knowledge do teachers develop as they engage in LS? Using a qualitative interpretivist case study approach, I worked collaboratively with four Grade 1 teachers from two schools. Data was generated through observations, semi-structured interviews and document analysis as we engaged in the Lesson Study process. The Mathematics Knowledge for Teaching (Ball, Thames & Phelps, 2008) and the Knowledge Quartet (Rowland, Turner, Thwaites & Huckstep, 2009) frameworks were used as analytic and explanatory tools in this research. This study's findings showed that participation in the interactive cycles of Lesson Study developed the teachers’ confidence, their pedagogical content knowledge and skills and provided them with the opportunity to collaborate and reflect on their knowledge. The study's findings suggest that lesson study can be used as a strategy for improving teacher professional development. , Thesis (MEd) -- Faculty of Education, Education, 2021
- Full Text:
- Authors: Kgothego, Naomi Ntsae
- Date: 2021-04
- Subjects: Mathematics -- Study and teaching (Elementary) -- South Africa -- Bojanala Platinum District Municipality , Pedagogical content knowledge , Lesson planning -- South Africa -- Bojanala Platinum District Municipality , Mathematics teachers -- Training of -- South Africa -- Bojanala Platinum District Municipality , South Africa. Department of Basic Education , Kokusai Kyōryoku Jigyōdan
- Language: English
- Type: thesis , text , Masters , MEd
- Identifier: http://hdl.handle.net/10962/178019 , vital:42899
- Description: Results of international assessments conducted with South African learners, both in primary and secondary schools, suggest that South African learners underperform in mathematics (Spaull, 2013). While there are numerous explanations for this, one of the key explanations is that teachers are deemed to have inadequate knowledge of both mathematics content and pedagogy. Poor content and pedagogical knowledge are indications that teachers are not adequately trained to teach mathematics (Green, 2011). To improve teachers' content and pedagogical knowledge, well-planned and researched professional development programmes need to be put in place. Current professional development opportunities that centre on workshops are not working as they provide little opportunity for teachers to connect the workshop content to the contexts in which they teach. Through a collaboration between the Department of Basic Education (DBE) and Japan International Corporation Agency (JICA), the Lesson Study approach is being introduced to support teachers' professional development. This research seeks to research this approach within the context of Foundation Phase mathematics education. The research asks: How does Lesson Study contribute to the development of teachers' mathematics content and pedagogical content knowledge? Two sub-questions were developed to support the main question: • What mathematics content knowledge do teachers develop as the engage in LS? • What pedagogical content knowledge do teachers develop as they engage in LS? Using a qualitative interpretivist case study approach, I worked collaboratively with four Grade 1 teachers from two schools. Data was generated through observations, semi-structured interviews and document analysis as we engaged in the Lesson Study process. The Mathematics Knowledge for Teaching (Ball, Thames & Phelps, 2008) and the Knowledge Quartet (Rowland, Turner, Thwaites & Huckstep, 2009) frameworks were used as analytic and explanatory tools in this research. This study's findings showed that participation in the interactive cycles of Lesson Study developed the teachers’ confidence, their pedagogical content knowledge and skills and provided them with the opportunity to collaborate and reflect on their knowledge. The study's findings suggest that lesson study can be used as a strategy for improving teacher professional development. , Thesis (MEd) -- Faculty of Education, Education, 2021
- Full Text:
The development of an ionospheric storm-time index for the South African region
- Authors: Tshisaphungo, Mpho
- Date: 2021-04
- Subjects: Ionospheric storms -- South Africa , Global Positioning System , Neural networks (Computer science) , Regression analysis , Ionosondes , Auroral electrojet , Geomagnetic indexes , Magnetic storms -- South Africa
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/178409 , vital:42937 , 10.21504/10962/178409
- Description: This thesis presents the development of a regional ionospheric storm-time model which forms the foundation of an index to provide a quick view of the ionospheric storm effects over South African mid-latitude region. The model is based on the foF2 measurements from four South African ionosonde stations. The data coverage for the model development over Grahamstown (33.3◦S, 26.5◦E), Hermanus (34.42◦S, 19.22◦E), Louisvale (28.50◦S, 21.20◦E), and Madimbo (22.39◦S, 30.88◦E) is 1996-2016, 2009-2016, 2000-2016, and 2000-2016 respectively. Data from the Global Positioning System (GPS) and radio occultation (RO) technique were used during validation. As the measure of either positive or negative storm effect, the variation of the critical frequency of the F2 layer (foF2) from the monthly median values (denoted as _foF2) is modeled. The modeling of _foF2 is based on only storm time data with the criteria of Dst 6 -50 nT and Kp > 4. The modeling methods used in the study were artificial neural network (ANN), linear regression (LR) and polynomial functions. The approach taken was to first test the modeling techniques on a single station before expanding the study to cover the regional aspect. The single station modeling was developed based on ionosonde data over Grahamstown. The inputs for the model which related to seasonal variation, diurnal variation, geomagnetic activity and solar activity were considered. For the geomagnetic activity, three indices namely; the symmetric disturbance in the horizontal component of the Earth’s magnetic field (SYM − H), the Auroral Electrojet (AE) index and local geomagnetic index A, were included as inputs. The performance of a single station model revealed that, of the three geomagnetic indices, SYM − H index has the largest contribution of 41% and 54% based on ANN and LR techniques respectively. The average correlation coefficients (R) for both ANN and LR models was 0.8, when validated during the selected storms falling within the period of model development. When validated using storms that fall outside the period of model development, the model gave R values of 0.6 and 0.5 for ANN and LR respectively. In addition, the GPS total electron content (TEC) derived measurements were used to estimate foF2 data. This is because there are more GPS receivers than ionosonde locations and the utilisation of this data increases the spatial coverage of the regional model. The estimation of foF2 from GPS TEC was done at GPS-ionosonde co-locations using polynomial functions. The average R values of 0.69 and 0.65 were obtained between actual and derived _foF2 over the co-locations and other GPS stations respectively. Validation of GPS TEC derived foF2 with RO data over regions out of ionospheric pierce points coverage with respect to ionosonde locations gave R greater than 0.9 for the selected storm period of 4-8 August 2011. The regional storm-time model was then developed based on the ANN technique using the four South African ionosonde stations. The maximum and minimum R values of 0.6 and 0.5 were obtained over ionosonde and GPS locations respectively. This model forms the basis towards the regional ionospheric storm-time index. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2021
- Full Text:
- Authors: Tshisaphungo, Mpho
- Date: 2021-04
- Subjects: Ionospheric storms -- South Africa , Global Positioning System , Neural networks (Computer science) , Regression analysis , Ionosondes , Auroral electrojet , Geomagnetic indexes , Magnetic storms -- South Africa
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/178409 , vital:42937 , 10.21504/10962/178409
- Description: This thesis presents the development of a regional ionospheric storm-time model which forms the foundation of an index to provide a quick view of the ionospheric storm effects over South African mid-latitude region. The model is based on the foF2 measurements from four South African ionosonde stations. The data coverage for the model development over Grahamstown (33.3◦S, 26.5◦E), Hermanus (34.42◦S, 19.22◦E), Louisvale (28.50◦S, 21.20◦E), and Madimbo (22.39◦S, 30.88◦E) is 1996-2016, 2009-2016, 2000-2016, and 2000-2016 respectively. Data from the Global Positioning System (GPS) and radio occultation (RO) technique were used during validation. As the measure of either positive or negative storm effect, the variation of the critical frequency of the F2 layer (foF2) from the monthly median values (denoted as _foF2) is modeled. The modeling of _foF2 is based on only storm time data with the criteria of Dst 6 -50 nT and Kp > 4. The modeling methods used in the study were artificial neural network (ANN), linear regression (LR) and polynomial functions. The approach taken was to first test the modeling techniques on a single station before expanding the study to cover the regional aspect. The single station modeling was developed based on ionosonde data over Grahamstown. The inputs for the model which related to seasonal variation, diurnal variation, geomagnetic activity and solar activity were considered. For the geomagnetic activity, three indices namely; the symmetric disturbance in the horizontal component of the Earth’s magnetic field (SYM − H), the Auroral Electrojet (AE) index and local geomagnetic index A, were included as inputs. The performance of a single station model revealed that, of the three geomagnetic indices, SYM − H index has the largest contribution of 41% and 54% based on ANN and LR techniques respectively. The average correlation coefficients (R) for both ANN and LR models was 0.8, when validated during the selected storms falling within the period of model development. When validated using storms that fall outside the period of model development, the model gave R values of 0.6 and 0.5 for ANN and LR respectively. In addition, the GPS total electron content (TEC) derived measurements were used to estimate foF2 data. This is because there are more GPS receivers than ionosonde locations and the utilisation of this data increases the spatial coverage of the regional model. The estimation of foF2 from GPS TEC was done at GPS-ionosonde co-locations using polynomial functions. The average R values of 0.69 and 0.65 were obtained between actual and derived _foF2 over the co-locations and other GPS stations respectively. Validation of GPS TEC derived foF2 with RO data over regions out of ionospheric pierce points coverage with respect to ionosonde locations gave R greater than 0.9 for the selected storm period of 4-8 August 2011. The regional storm-time model was then developed based on the ANN technique using the four South African ionosonde stations. The maximum and minimum R values of 0.6 and 0.5 were obtained over ionosonde and GPS locations respectively. This model forms the basis towards the regional ionospheric storm-time index. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2021
- Full Text:
- «
- ‹
- 1
- ›
- »