Photophysicochemical and photodynamic therapy properties of metallophthalocyanines linked to gold speckled silica nanoparticles
- Dube, Edith, Oluwole, David O, Niemuwa, Nwaji, Prinsloo, Earl, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Niemuwa, Nwaji , Prinsloo, Earl , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187472 , vital:44657 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.01.019"
- Description: This work reports on the linkage of 2(3),9(10),16(17),23(24) tetrakis [(benzo[d]thiazol-2-yl phenoxy) phthalocyaninato] zinc(II) (1) and indium(III) chloride (2) to gold speckled silica (GSS) nanoparticles via gold to sulphur (Au-S) and gold to nitrogen (Au-N) self-assembly to form the conjugates: 1-GSS and 2-GSS. The formed conjugates were characterized using microscopic and spectroscopic techniques, and the photophysicochemical properties and photodynamic therapy (PDT) activity against human breast adenocarcinoma cell line (MCF-7 cells) were studied. The conjugates afforded decrease in fluorescence quantum yields with corresponding increase in triplet and singlet oxygen quantum yields when compared to phthalocyanines alone. Singlet oxygen is cytotoxic to cancer cells hence it is important for PDT. The in vitro dark toxicity of complex 2 and 2-GSS against MCF–7 cells showed ≥93% viable cells within concentration ranges of 10–160 μg/mL. 2–GSS showed enhanced PDT activity with less than 50% viable cells at 80 μg/mL as compared to 2 and GSS alone which showed > 60% viable cells within 10–160 μg/mL. The observed improvements in the PDT activity of 2-GSS could be attributed to the high singlet oxygen generation of 2-GSS compared to 2 alone in addition to the phototoxicity of GSS.
- Full Text:
- Date Issued: 2019
- Authors: Dube, Edith , Oluwole, David O , Niemuwa, Nwaji , Prinsloo, Earl , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187472 , vital:44657 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.01.019"
- Description: This work reports on the linkage of 2(3),9(10),16(17),23(24) tetrakis [(benzo[d]thiazol-2-yl phenoxy) phthalocyaninato] zinc(II) (1) and indium(III) chloride (2) to gold speckled silica (GSS) nanoparticles via gold to sulphur (Au-S) and gold to nitrogen (Au-N) self-assembly to form the conjugates: 1-GSS and 2-GSS. The formed conjugates were characterized using microscopic and spectroscopic techniques, and the photophysicochemical properties and photodynamic therapy (PDT) activity against human breast adenocarcinoma cell line (MCF-7 cells) were studied. The conjugates afforded decrease in fluorescence quantum yields with corresponding increase in triplet and singlet oxygen quantum yields when compared to phthalocyanines alone. Singlet oxygen is cytotoxic to cancer cells hence it is important for PDT. The in vitro dark toxicity of complex 2 and 2-GSS against MCF–7 cells showed ≥93% viable cells within concentration ranges of 10–160 μg/mL. 2–GSS showed enhanced PDT activity with less than 50% viable cells at 80 μg/mL as compared to 2 and GSS alone which showed > 60% viable cells within 10–160 μg/mL. The observed improvements in the PDT activity of 2-GSS could be attributed to the high singlet oxygen generation of 2-GSS compared to 2 alone in addition to the phototoxicity of GSS.
- Full Text:
- Date Issued: 2019
Physicochemical and antimicrobial photodynamic chemotherapy (against E. coli) by indium phthalocyanines in the presence of silver–iron bimetallic nanoparticles
- Magadla, Aviwe, Oluwole, David O, Managa, Muthumuni, Nyokong, Tebello
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
Effect of nature of nanoparticles on the photophysicochemical properties of asymmetrically substituted Zn phthalocyanines
- Magadla, Aviwe, Oluwole, David O, Britton, Jonathan, Nyokong, Tebello
- Authors: Magadla, Aviwe , Oluwole, David O , Britton, Jonathan , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234539 , vital:50206 , xlink:href="https://doi.org/10.1016/j.ica.2018.06.043"
- Description: In this work, low symmetry Zn mono caffeic acid tri-tert butyl (1) and Zn monocarboxyphenoxy tri-(tert-butylphenoxyl) (2) phthalocyanines (Pcs) were covalently linked to amino (using glutathione, GSH, or 3-aminopropyl)triethoxysilane, APTES) functionalised nanoparticles. The nanoparticles are represented as: AgNPs-GSH, SiNPs-APTES, Fe3O4-Ag-SiNPs-APTES and Fe3O4-AgNPs-GSH). The photophysical and photochemical behaviour of the complexes 1 and 2 and their conjugates with nanoparticles were investigated in dimethyl sulfoxide. The conjugates of the Pc complexes with the NPs afforded increase in triplet quantum yields with corresponding decrease in fluorescence quantum yield compared to the Pc complexes alone. The conjugates of 1-AgNPs-GSH, 2-SiNPs-APTES and 2-Fe3O4-Ag-SiNPs-APTES showed higher singlet oxygen quantum yield values as compared to the Pc complexes alone.
- Full Text:
- Date Issued: 2018
- Authors: Magadla, Aviwe , Oluwole, David O , Britton, Jonathan , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234539 , vital:50206 , xlink:href="https://doi.org/10.1016/j.ica.2018.06.043"
- Description: In this work, low symmetry Zn mono caffeic acid tri-tert butyl (1) and Zn monocarboxyphenoxy tri-(tert-butylphenoxyl) (2) phthalocyanines (Pcs) were covalently linked to amino (using glutathione, GSH, or 3-aminopropyl)triethoxysilane, APTES) functionalised nanoparticles. The nanoparticles are represented as: AgNPs-GSH, SiNPs-APTES, Fe3O4-Ag-SiNPs-APTES and Fe3O4-AgNPs-GSH). The photophysical and photochemical behaviour of the complexes 1 and 2 and their conjugates with nanoparticles were investigated in dimethyl sulfoxide. The conjugates of the Pc complexes with the NPs afforded increase in triplet quantum yields with corresponding decrease in fluorescence quantum yield compared to the Pc complexes alone. The conjugates of 1-AgNPs-GSH, 2-SiNPs-APTES and 2-Fe3O4-Ag-SiNPs-APTES showed higher singlet oxygen quantum yield values as compared to the Pc complexes alone.
- Full Text:
- Date Issued: 2018
Optical nonlinearity of pentadecylphenoxyl substituted sandwich–type metallophthalocyanines in the presence of Ag–CdSeTe/ZnTeSe nanocrystals: Effects of conjugation and central metals
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187899 , vital:44708 , xlink:href="https://doi.org/10.1016/j.dyepig.2018.01.009"
- Description: Novel pentadecylphenoxyl substituted homoleptic sandwich–type metallophthalocyanines: bis (complexes 2 and 4 containing Eu and Dy, respectively) and tris (complexes 3 and 5 containing Eu and Dy, respectively) 2,9,16,23–tetrakis–(3–pentadecylphenoxyl) phthalocyanines and cadmium based (Ag–CdSeTe/ZnTeSe) nanocrystals (NCs) were synthesized. The nonlinear optical (NLO) behavior of the metallophthalocyanines and their composites with NCs were investigated using the open aperture Z–scan technique at excitation wavelength of 532 nm with 10 ns pulse. All of the samples exhibited interesting NLO attributes: among all the sandwich–type complexes, complex 5 afforded the most efficient NLO features accounting for large nonlinear absorption coefficient (βeff) value of 3500 cm/GW and limiting threshold (Ilim) value of 0.43 J cm−2. Overall, the composites of the triple decker sandwich–type complexes with Ag–CdSeTe/ZnTeSe yielded the best NLO characteristics with 3 and 5 accounting for the largest βeff value of 5500 cm/GW and Ilim value of 0.09 J cm−2. The synthesized complexes and their composites with NCs could be viable and efficient NLO absorber due to their interesting NLO activities.
- Full Text:
- Date Issued: 2018
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187899 , vital:44708 , xlink:href="https://doi.org/10.1016/j.dyepig.2018.01.009"
- Description: Novel pentadecylphenoxyl substituted homoleptic sandwich–type metallophthalocyanines: bis (complexes 2 and 4 containing Eu and Dy, respectively) and tris (complexes 3 and 5 containing Eu and Dy, respectively) 2,9,16,23–tetrakis–(3–pentadecylphenoxyl) phthalocyanines and cadmium based (Ag–CdSeTe/ZnTeSe) nanocrystals (NCs) were synthesized. The nonlinear optical (NLO) behavior of the metallophthalocyanines and their composites with NCs were investigated using the open aperture Z–scan technique at excitation wavelength of 532 nm with 10 ns pulse. All of the samples exhibited interesting NLO attributes: among all the sandwich–type complexes, complex 5 afforded the most efficient NLO features accounting for large nonlinear absorption coefficient (βeff) value of 3500 cm/GW and limiting threshold (Ilim) value of 0.43 J cm−2. Overall, the composites of the triple decker sandwich–type complexes with Ag–CdSeTe/ZnTeSe yielded the best NLO characteristics with 3 and 5 accounting for the largest βeff value of 5500 cm/GW and Ilim value of 0.09 J cm−2. The synthesized complexes and their composites with NCs could be viable and efficient NLO absorber due to their interesting NLO activities.
- Full Text:
- Date Issued: 2018
Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles
- Matlou, Gauta G, Oluwole, David O, Prinsloo, Earl, Nyokong, Tebello
- Authors: Matlou, Gauta G , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234429 , vital:50195 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2018.07.025"
- Description: In this work, the photodynamic therapy (PDT) activities (using human carcinoma adherent MCF-7 cells) of zinc phthalocyanine derivatives: complexes 1 (Zn mono cinnamic acid phthalocyanine) and 2 (zinc mono carboxyphenoxy phthalocyanine) when covalently linked to folic acid (FA) and amine functionalized magnetic nanoparticles (AMNPs) are reported. The covalent linkage of asymmetric zinc cinnamic acid Pc (1) to FA (1-FA) through an amide bond is reported for the first time. Complex 1 is insoluble in water, but upon linkage to FA, (to form 1-FA) the molecule become water soluble, hence the UV–Vis spectrum and singlet oxygen quantum yield for 1-FA were also done in water since water solubility is essential for biological applications. The reported 2-FA is also water soluble. Linking complexes 1 and 2 to FA and AMNPs decreased the dark toxicity of 1 and 2 on MCF-7 cells. Pc-FA (1-FA and 2-FA) conjugates had better singlet oxygen quantum yields (Φ∆) in DMSO as compared to Pc-AMNPs (1-AMNPs and 2-AMNPs). The water- soluble 1-FA and 2-FA also achieved a better photodynamic therapy (PDT) activity as compared to 1-AMNPs and 2-AMNPs. Folic acid targeting on the tumor cells may have also facilitated better bioavailability of 1-FA and 2-FA and improved PDT activity on MCF-7 cells over AMNPs carriers.
- Full Text:
- Date Issued: 2018
Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles
- Authors: Matlou, Gauta G , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234429 , vital:50195 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2018.07.025"
- Description: In this work, the photodynamic therapy (PDT) activities (using human carcinoma adherent MCF-7 cells) of zinc phthalocyanine derivatives: complexes 1 (Zn mono cinnamic acid phthalocyanine) and 2 (zinc mono carboxyphenoxy phthalocyanine) when covalently linked to folic acid (FA) and amine functionalized magnetic nanoparticles (AMNPs) are reported. The covalent linkage of asymmetric zinc cinnamic acid Pc (1) to FA (1-FA) through an amide bond is reported for the first time. Complex 1 is insoluble in water, but upon linkage to FA, (to form 1-FA) the molecule become water soluble, hence the UV–Vis spectrum and singlet oxygen quantum yield for 1-FA were also done in water since water solubility is essential for biological applications. The reported 2-FA is also water soluble. Linking complexes 1 and 2 to FA and AMNPs decreased the dark toxicity of 1 and 2 on MCF-7 cells. Pc-FA (1-FA and 2-FA) conjugates had better singlet oxygen quantum yields (Φ∆) in DMSO as compared to Pc-AMNPs (1-AMNPs and 2-AMNPs). The water- soluble 1-FA and 2-FA also achieved a better photodynamic therapy (PDT) activity as compared to 1-AMNPs and 2-AMNPs. Folic acid targeting on the tumor cells may have also facilitated better bioavailability of 1-FA and 2-FA and improved PDT activity on MCF-7 cells over AMNPs carriers.
- Full Text:
- Date Issued: 2018
Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis
- Ramírez-García, Gonzalo, Oluwole, David O, Nxele, Siphesihle Robin, d’Orlyé, Fanny, Nyokong, Tebello, Bedioui, Fethi, Varenne, Anne
- Authors: Ramírez-García, Gonzalo , Oluwole, David O , Nxele, Siphesihle Robin , d’Orlyé, Fanny , Nyokong, Tebello , Bedioui, Fethi , Varenne, Anne
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238184 , vital:50595 , xlink:href="https://doi.org/10.1007/s00216-016-0120-x"
- Description: In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy.
- Full Text:
- Date Issued: 2017
- Authors: Ramírez-García, Gonzalo , Oluwole, David O , Nxele, Siphesihle Robin , d’Orlyé, Fanny , Nyokong, Tebello , Bedioui, Fethi , Varenne, Anne
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238184 , vital:50595 , xlink:href="https://doi.org/10.1007/s00216-016-0120-x"
- Description: In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy.
- Full Text:
- Date Issued: 2017
Optical limiters with improved performance based on nanoconjugates of thiol substituted phthalocyanine with CdSe quantum dots and Ag nanoparticles
- Oluwole, David O, Yagodin, Alexey V, Britton, Jonathan, Martynov, Alexander G, Gorbunova, Yulia G, Tsivadze, Aslan Yu, Nyokong, Tebello
- Authors: Oluwole, David O , Yagodin, Alexey V , Britton, Jonathan , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238286 , vital:50605 , xlink:href="https://doi.org/10.1039/C7DT03867D"
- Description: Two alternative synthetic approaches affording a low-symmetry A3B-type phthalocyanine 1 bearing two [2′-(2′′-mercaptoethoxy)ethoxy] anchoring substituents were developed. Due to the presence of thiol groups, this phthalocyanine could be conjugated with TOPO-capped (TOPO - trioctylphosphine)-capped CdSe quantum dots (CdSe-QDs) or oleylamine capped silver nanoparticles (Ag-NPs). The nonlinear optical behaviour of starting phthalocyanine, quantum dots, nanoparticles and their conjugates was studied by using an open aperture Z-scan technique, revealing that the grafting of 1 onto the nanomaterials resulted in a significant enhancement of the optical limiting of 1-Ag and 1-CdSe in comparison with the individual components. The conjugate 1-CdSe, being the first example of Pc-based thiol conjugated with quantum dots, revealed superior limiting characteristics with a limiting threshold below 0.18 J cm−2.
- Full Text:
- Date Issued: 2017
- Authors: Oluwole, David O , Yagodin, Alexey V , Britton, Jonathan , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238286 , vital:50605 , xlink:href="https://doi.org/10.1039/C7DT03867D"
- Description: Two alternative synthetic approaches affording a low-symmetry A3B-type phthalocyanine 1 bearing two [2′-(2′′-mercaptoethoxy)ethoxy] anchoring substituents were developed. Due to the presence of thiol groups, this phthalocyanine could be conjugated with TOPO-capped (TOPO - trioctylphosphine)-capped CdSe quantum dots (CdSe-QDs) or oleylamine capped silver nanoparticles (Ag-NPs). The nonlinear optical behaviour of starting phthalocyanine, quantum dots, nanoparticles and their conjugates was studied by using an open aperture Z-scan technique, revealing that the grafting of 1 onto the nanomaterials resulted in a significant enhancement of the optical limiting of 1-Ag and 1-CdSe in comparison with the individual components. The conjugate 1-CdSe, being the first example of Pc-based thiol conjugated with quantum dots, revealed superior limiting characteristics with a limiting threshold below 0.18 J cm−2.
- Full Text:
- Date Issued: 2017
Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan
- Oluwole, David O, Prinsloo, Earl, Nyokong, Tebello
- Authors: Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188497 , vital:44759 , xlink:href="https://doi.org/10.1016/j.saa.2016.09.032"
- Description: Zincmonocarboxyphenoxy phthalocyanine (ZnMCPPc) was linked to human serum albumin (HSA) and chitosan via amide bond formation. The photophysical behavior and photodynamic therapy (PDT) activity (against human breast adenocarcinoma cell line (MCF-7 cells) of ZnMCPPc alone and its conjugates were investigated. The conjugates showed improved fluorescence, triplet and singlet oxygen quantum yields when compared to ZnMCPPc alone. The in vitro dark cytotoxicity and PDT studies were carried out at a dose of 3.6 μg/mL to 57.1 μg/mL. The in vitro dark cytotoxicity studies of ZnMCPPc showed cell viability more than 50% at 28.6 μg/mL and 57.1 μg/mL, while the conjugates showed > 50% in all their tested concentrations (3.6 to 57.1) μg/mL. Thus, conjugation of ZnMCPPc to HSA and chitosan improves its dark cytotoxicity, an important criteria for molecules meant for photodynamic therapy. Complex 1 showed the most efficacious PDT activity with cell viability more than 50% at concentration range of (14.3 to 57.1) μg/mL in comparison to the conjugates which only showed more than 50% cell viability at 28.6 μg/mL and 57.1 μg/mL for 1-HSA and 57.1 μg/mL for 1-Chitosan.
- Full Text:
- Date Issued: 2017
- Authors: Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188497 , vital:44759 , xlink:href="https://doi.org/10.1016/j.saa.2016.09.032"
- Description: Zincmonocarboxyphenoxy phthalocyanine (ZnMCPPc) was linked to human serum albumin (HSA) and chitosan via amide bond formation. The photophysical behavior and photodynamic therapy (PDT) activity (against human breast adenocarcinoma cell line (MCF-7 cells) of ZnMCPPc alone and its conjugates were investigated. The conjugates showed improved fluorescence, triplet and singlet oxygen quantum yields when compared to ZnMCPPc alone. The in vitro dark cytotoxicity and PDT studies were carried out at a dose of 3.6 μg/mL to 57.1 μg/mL. The in vitro dark cytotoxicity studies of ZnMCPPc showed cell viability more than 50% at 28.6 μg/mL and 57.1 μg/mL, while the conjugates showed > 50% in all their tested concentrations (3.6 to 57.1) μg/mL. Thus, conjugation of ZnMCPPc to HSA and chitosan improves its dark cytotoxicity, an important criteria for molecules meant for photodynamic therapy. Complex 1 showed the most efficacious PDT activity with cell viability more than 50% at concentration range of (14.3 to 57.1) μg/mL in comparison to the conjugates which only showed more than 50% cell viability at 28.6 μg/mL and 57.1 μg/mL for 1-HSA and 57.1 μg/mL for 1-Chitosan.
- Full Text:
- Date Issued: 2017
Photophysicochemical properties and in vitro cytotoxicity of zinc tetracarboxyphenoxy phthalocyanine–quantum dot nanocomposites
- Oluwole, David O, Tilbury, Chelsea M, Prinsloo, Earl, Limson, Janice L, Nyokong, Tebello
- Authors: Oluwole, David O , Tilbury, Chelsea M , Prinsloo, Earl , Limson, Janice L , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240846 , vital:50878 , xlink:href="https://doi.org/10.1016/j.poly.2015.12.060"
- Description: Cadmium based quantum dots (QDs) capped with two different ligands (thioglycolic acid, TGA, and glutathione, GSH) were synthesized. The QDs are: CdTe, CdTe/ZnO, CdTeSe, CdTeSe/ZnO and CdSe/ZnS (the last one for TGA only). Cytotoxicity of the QDs against MCF-7 epithelial breast cancer was evaluated. The TGA capped core QDs were found to be highly cytotoxic to the cell lines when compared to GSH capped ones. The glutathione capped QDs were covalently linked to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc). Cytotoxicity and photophysicochemical properties of the conjugates were investigated. The toxicity of the core QDs was reduced in the presence of ZnTCPPc. Enhanced triplet quantum yields and long triplet lifetimes were obtained for ZnTCPPc in the presence of all QDs.
- Full Text:
- Date Issued: 2015
- Authors: Oluwole, David O , Tilbury, Chelsea M , Prinsloo, Earl , Limson, Janice L , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240846 , vital:50878 , xlink:href="https://doi.org/10.1016/j.poly.2015.12.060"
- Description: Cadmium based quantum dots (QDs) capped with two different ligands (thioglycolic acid, TGA, and glutathione, GSH) were synthesized. The QDs are: CdTe, CdTe/ZnO, CdTeSe, CdTeSe/ZnO and CdSe/ZnS (the last one for TGA only). Cytotoxicity of the QDs against MCF-7 epithelial breast cancer was evaluated. The TGA capped core QDs were found to be highly cytotoxic to the cell lines when compared to GSH capped ones. The glutathione capped QDs were covalently linked to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc). Cytotoxicity and photophysicochemical properties of the conjugates were investigated. The toxicity of the core QDs was reduced in the presence of ZnTCPPc. Enhanced triplet quantum yields and long triplet lifetimes were obtained for ZnTCPPc in the presence of all QDs.
- Full Text:
- Date Issued: 2015
Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxy phthalocyanine covalently linked to GSH–CdTe/CdS/ZnS quantum dots
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189480 , vital:44850 , xlink:href="https://doi.org/10.1016/j.poly.2014.10.024"
- Description: Zinc monocarboxyphenoxy and tetracarboxyphenoxy phthalocyanines were covalently linked with three different sizes of glutathione capped core/shell/shell {CdTe/CdS/ZnS(4.2), CdTe/CdS/ZnS(5.1) and CdTe/CdS/ZnS(6.7)}; a core shell {CdTe/CdS(3.1)} and core {CdTe(2.4)} quantum dots. The physicochemical behavior and Förster resonance energy transfer (FRET) processes of the nanohybrids were investigated. The highest FRET efficiency was observed with CdTe/CdS/ZnS(6.7) nanohybrids with 98% and the least efficiency was observed with CdTe(2.4) nanohybrids with 85%. The CdTe/CdS/ZnS(6.7) also showed the best physicochemical behavior. These good physicochemical properties make the synthesized nanohybrids viable photosensitizers.
- Full Text:
- Date Issued: 2015
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189480 , vital:44850 , xlink:href="https://doi.org/10.1016/j.poly.2014.10.024"
- Description: Zinc monocarboxyphenoxy and tetracarboxyphenoxy phthalocyanines were covalently linked with three different sizes of glutathione capped core/shell/shell {CdTe/CdS/ZnS(4.2), CdTe/CdS/ZnS(5.1) and CdTe/CdS/ZnS(6.7)}; a core shell {CdTe/CdS(3.1)} and core {CdTe(2.4)} quantum dots. The physicochemical behavior and Förster resonance energy transfer (FRET) processes of the nanohybrids were investigated. The highest FRET efficiency was observed with CdTe/CdS/ZnS(6.7) nanohybrids with 98% and the least efficiency was observed with CdTe(2.4) nanohybrids with 85%. The CdTe/CdS/ZnS(6.7) also showed the best physicochemical behavior. These good physicochemical properties make the synthesized nanohybrids viable photosensitizers.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »