Euendolithic Infestation of Mussel Shells Indirectly Improves the Thermal Buffering Offered by Mussel Beds to Associated Molluscs, but One Size Does Not Fit All
- Dievart, Alexia M, McQuaid, Christopher D, Zardi, Gerardo I, Nicastro, Katy R, Froneman, P William
- Authors: Dievart, Alexia M , McQuaid, Christopher D , Zardi, Gerardo I , Nicastro, Katy R , Froneman, P William
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/465754 , vital:76638 , https://doi.org/10.3390/d15020239
- Description: Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy.
- Full Text:
- Authors: Dievart, Alexia M , McQuaid, Christopher D , Zardi, Gerardo I , Nicastro, Katy R , Froneman, P William
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/465754 , vital:76638 , https://doi.org/10.3390/d15020239
- Description: Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy.
- Full Text:
Two sides of the same coin: extinctions and originations across the Atlantic/Indian Ocean boundary as consequences of the same climate oscillation
- Teske, Peter R, Zardi, Gerardo I, McQuaid, Christopher D, Nicastro, Katy R
- Authors: Teske, Peter R , Zardi, Gerardo I , McQuaid, Christopher D , Nicastro, Katy R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445547 , vital:74399 , https://doi.org/10.21425/F5FBG15591
- Description: Global climate change is correlated not only with variation in extinction rates, but also with speciation rates. However, few mechanisms have been proposed to explain how climate change may have driven the emergence of new evolutionary lineages that eventually became distinct species. Here, we discuss a model of range extension followed by divergence, in which the same climate oscillations that resulted in the extinction of coastal species across the Atlantic/Indian Ocean boundary in southwestern Africa also sowed the seeds of new biodiversity. We present evidence for range extensions and evolutionary divergence from both fossil and genetic data, but also point out the many challenges to the model that need to be addressed before its validity can be accepted.
- Full Text:
- Authors: Teske, Peter R , Zardi, Gerardo I , McQuaid, Christopher D , Nicastro, Katy R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445547 , vital:74399 , https://doi.org/10.21425/F5FBG15591
- Description: Global climate change is correlated not only with variation in extinction rates, but also with speciation rates. However, few mechanisms have been proposed to explain how climate change may have driven the emergence of new evolutionary lineages that eventually became distinct species. Here, we discuss a model of range extension followed by divergence, in which the same climate oscillations that resulted in the extinction of coastal species across the Atlantic/Indian Ocean boundary in southwestern Africa also sowed the seeds of new biodiversity. We present evidence for range extensions and evolutionary divergence from both fossil and genetic data, but also point out the many challenges to the model that need to be addressed before its validity can be accepted.
- Full Text:
"Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions
- Teske, Peter R, Ruis, Marc, McQuaid, Christopher D, Styan, Craig A, Piggott, Maxine P, Benhissoune, Saïd, Fuentes-Grünewald, Claudio, Walls, Kathy, Page, Mike, Attard, Catherine R M, Cooke, Georgina M, McClusky, Claire F, Banks, Sam C, Barker, Nigel P, Beheregaray, Luciano B
- Authors: Teske, Peter R , Ruis, Marc , McQuaid, Christopher D , Styan, Craig A , Piggott, Maxine P , Benhissoune, Saïd , Fuentes-Grünewald, Claudio , Walls, Kathy , Page, Mike , Attard, Catherine R M , Cooke, Georgina M , McClusky, Claire F , Banks, Sam C , Barker, Nigel P , Beheregaray, Luciano B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445529 , vital:74396 , https://doi.org/10.1186/1471-2148-11-176
- Description: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.
- Full Text:
- Authors: Teske, Peter R , Ruis, Marc , McQuaid, Christopher D , Styan, Craig A , Piggott, Maxine P , Benhissoune, Saïd , Fuentes-Grünewald, Claudio , Walls, Kathy , Page, Mike , Attard, Catherine R M , Cooke, Georgina M , McClusky, Claire F , Banks, Sam C , Barker, Nigel P , Beheregaray, Luciano B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445529 , vital:74396 , https://doi.org/10.1186/1471-2148-11-176
- Description: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.
- Full Text:
Supply-side ecology of the brown mussel, Perna perna: an investigation of spatial and temporal variation in, and coupling between, gamete release and larval supply
- McQuaid, Christopher D, Lawrie, S M
- Authors: McQuaid, Christopher D , Lawrie, S M
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6954 , http://hdl.handle.net/10962/d1011987
- Description: Sampling of recruitment-associated variables of Perna perna was done approximately monthly for 14 months at intertidal locations 500 m apart, nested within sites 25 km apart. Paired with intertidal locations were nearshore locations, 600 m to sea. Sampling assessed spawning, densities of larvae in the water column and densities of late plantigrades and juveniles on the shore. Major events in each variable were synchronous over larger scales (10s of kilometres) while subsidiary events were synchronised at smaller scales, varying within sites (100s of metres) or even within locations (metres). This suggests that the processes driving major events operated over large scales while processes operating at much more local scales drove less intense, more localised events. A major spawning event occurred at all locations in May–June 1998. Weaker spawning events occurred at different times in different locations. Larvae were found on 80% of sampling occasions, densities peaking in January–March 1998 and 1999 at all locations. Plantigrades and juveniles showed less clear patterns, with considerable residual variation. There was no sign of strong coupling among variables with few significant direct or cross correlations. The major sources of variability shifted from time to space as one progressed from spawning, to plantigrade density to juvenile density. For spawning, time was the most important source (58%) of heterogeneity and space accounted for little (8%) of the total variance. For larvae and late plantigrades, time was still the most important source of variability (41% and 33%, respectively), but space was a much more substantial component. For juveniles, small-scale (residual) spatial variability dominated total variability (75%). This strongly suggests the importance of hydrography and its effects on variation in delivery of larvae to the intertidal from offshore. These findings also indicate greater spatial heterogeneity as recruits age, reflecting small-scale variations in larval delivery and the increasing importance of post-settlement mortality.
- Full Text:
- Authors: McQuaid, Christopher D , Lawrie, S M
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6954 , http://hdl.handle.net/10962/d1011987
- Description: Sampling of recruitment-associated variables of Perna perna was done approximately monthly for 14 months at intertidal locations 500 m apart, nested within sites 25 km apart. Paired with intertidal locations were nearshore locations, 600 m to sea. Sampling assessed spawning, densities of larvae in the water column and densities of late plantigrades and juveniles on the shore. Major events in each variable were synchronous over larger scales (10s of kilometres) while subsidiary events were synchronised at smaller scales, varying within sites (100s of metres) or even within locations (metres). This suggests that the processes driving major events operated over large scales while processes operating at much more local scales drove less intense, more localised events. A major spawning event occurred at all locations in May–June 1998. Weaker spawning events occurred at different times in different locations. Larvae were found on 80% of sampling occasions, densities peaking in January–March 1998 and 1999 at all locations. Plantigrades and juveniles showed less clear patterns, with considerable residual variation. There was no sign of strong coupling among variables with few significant direct or cross correlations. The major sources of variability shifted from time to space as one progressed from spawning, to plantigrade density to juvenile density. For spawning, time was the most important source (58%) of heterogeneity and space accounted for little (8%) of the total variance. For larvae and late plantigrades, time was still the most important source of variability (41% and 33%, respectively), but space was a much more substantial component. For juveniles, small-scale (residual) spatial variability dominated total variability (75%). This strongly suggests the importance of hydrography and its effects on variation in delivery of larvae to the intertidal from offshore. These findings also indicate greater spatial heterogeneity as recruits age, reflecting small-scale variations in larval delivery and the increasing importance of post-settlement mortality.
- Full Text:
Spatial structure of recruitment in the mussel Perna perna at local scales: effects of adults, algae and recruit size
- Erlandsson, Johan, McQuaid, Christopher D
- Authors: Erlandsson, Johan , McQuaid, Christopher D
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6898 , http://hdl.handle.net/10962/d1011660
- Description: To test the assumption that there is no spatial structure in small-scale recruitment variability of rocky shore mussels, we examined spatial dependence in the distribution of density of recruits (late plantigrades: 0.5 to 3.5 mm; larger recruits: 3.5 to 10 mm) and adults of the brown mussel Perna perna within local scales (30 lags ranging between 0.35 and 10.5 m) in mid- and upper mussel beds. Spatial heterogeneity was estimated by analyzing scaling properties of semivariograms using a fractal approach. Relationships between density of mussel recruits and adults and biomass of the red alga Gelidium pristoides at the different scales were examined by cross-semivariograms. We found that the distribution of adults showed spatial dependence at all transects, often with higher spatial heterogeneity (higher fractal dimension, D) at smaller scales (1st scaling region). The distribution of larger recruits exhibited spatial dependence at all transects, revealing a spatial structure, which was related to that of adults. In contrast, the distribution of late plantigrades showed mainly spatial independence (random pattern; 1.97 < D ≤ 2). Densities of both size classes of recruits were positively related to those of adults at all transects and scales, but the relationship was stronger for larger recruits than late plantigrades, explaining why there was clearer spatial structure of larger recruits. The relationship with algae was mainly negative for larger recruits, while it tended to be positive at many scales for late plantigrades. Thus, both adult mussels and G. pristoides are suitable habitats for plantigrades, while mussels are the main habitat for larger recruits. This may mean that recruits on algae either die or migrate to mussel clumps at a certain size. This study highlights the importance of recruit size when analyzing recruitment patchiness of mussels, and has implications for sustainable management of P. perna.
- Full Text:
- Authors: Erlandsson, Johan , McQuaid, Christopher D
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6898 , http://hdl.handle.net/10962/d1011660
- Description: To test the assumption that there is no spatial structure in small-scale recruitment variability of rocky shore mussels, we examined spatial dependence in the distribution of density of recruits (late plantigrades: 0.5 to 3.5 mm; larger recruits: 3.5 to 10 mm) and adults of the brown mussel Perna perna within local scales (30 lags ranging between 0.35 and 10.5 m) in mid- and upper mussel beds. Spatial heterogeneity was estimated by analyzing scaling properties of semivariograms using a fractal approach. Relationships between density of mussel recruits and adults and biomass of the red alga Gelidium pristoides at the different scales were examined by cross-semivariograms. We found that the distribution of adults showed spatial dependence at all transects, often with higher spatial heterogeneity (higher fractal dimension, D) at smaller scales (1st scaling region). The distribution of larger recruits exhibited spatial dependence at all transects, revealing a spatial structure, which was related to that of adults. In contrast, the distribution of late plantigrades showed mainly spatial independence (random pattern; 1.97 < D ≤ 2). Densities of both size classes of recruits were positively related to those of adults at all transects and scales, but the relationship was stronger for larger recruits than late plantigrades, explaining why there was clearer spatial structure of larger recruits. The relationship with algae was mainly negative for larger recruits, while it tended to be positive at many scales for late plantigrades. Thus, both adult mussels and G. pristoides are suitable habitats for plantigrades, while mussels are the main habitat for larger recruits. This may mean that recruits on algae either die or migrate to mussel clumps at a certain size. This study highlights the importance of recruit size when analyzing recruitment patchiness of mussels, and has implications for sustainable management of P. perna.
- Full Text:
- «
- ‹
- 1
- ›
- »