Thermal stress gradient causes increasingly negative effects towards the range limit of an invasive mussel
- Ma, Kevin C K, Monsinjon, Jonathan R, Froneman, P William, McQuaid, Christopher D
- Authors: Ma, Kevin C K , Monsinjon, Jonathan R , Froneman, P William , McQuaid, Christopher D
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/479407 , vital:78299 , https://doi.org/10.1016/j.scitotenv.2022.161184
- Description: Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south–southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature.
- Full Text:
- Date Issued: 2023
- Authors: Ma, Kevin C K , Monsinjon, Jonathan R , Froneman, P William , McQuaid, Christopher D
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/479407 , vital:78299 , https://doi.org/10.1016/j.scitotenv.2022.161184
- Description: Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south–southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature.
- Full Text:
- Date Issued: 2023
Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel
- Lourenço, Carla R, Nicastro, Katy R, McQuaid, Christopher D, Chefaoui, Rosa M, Assis, Jorge, Taleb, Mohammed Z, Zardi, Gerardo I
- Authors: Lourenço, Carla R , Nicastro, Katy R , McQuaid, Christopher D , Chefaoui, Rosa M , Assis, Jorge , Taleb, Mohammed Z , Zardi, Gerardo I
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59952 , vital:27714 , doi:10.1038/s41598-017-10753-9
- Description: Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.
- Full Text:
- Date Issued: 2017
- Authors: Lourenço, Carla R , Nicastro, Katy R , McQuaid, Christopher D , Chefaoui, Rosa M , Assis, Jorge , Taleb, Mohammed Z , Zardi, Gerardo I
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59952 , vital:27714 , doi:10.1038/s41598-017-10753-9
- Description: Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.
- Full Text:
- Date Issued: 2017
Biogeographical boundaries, functional group structure and diversity of rocky shore communities along the Argentinean coast
- Wieters, Evie A, McQuaid, Christopher D, Palomo, Gabriela, Pappalardo, Paula
- Authors: Wieters, Evie A , McQuaid, Christopher D , Palomo, Gabriela , Pappalardo, Paula
- Date: 2013
- Language: English
- Type: Article
- Identifier: vital:6835 , http://hdl.handle.net/10962/d1010956
- Description: We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial variability in environmental conditions.
- Full Text:
- Date Issued: 2013
- Authors: Wieters, Evie A , McQuaid, Christopher D , Palomo, Gabriela , Pappalardo, Paula
- Date: 2013
- Language: English
- Type: Article
- Identifier: vital:6835 , http://hdl.handle.net/10962/d1010956
- Description: We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial variability in environmental conditions.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »