Social parasitism by honeybee workers (Apis mellifera capensis Escholtz): host finding and resistance of hybrid host colonies
- Neumann, Peter, Radloff, Sarah E, Moritz, Robin F A, Hepburn, H Randall, Reece, Sacha L
- Authors: Neumann, Peter , Radloff, Sarah E , Moritz, Robin F A , Hepburn, H Randall , Reece, Sacha L
- Date: 2001
- Language: English
- Type: text , Article
- Identifier: vital:6907 , http://hdl.handle.net/10962/d1011860
- Description: We studied possible host finding and resistance mechanisms of host colonies in the context of social parasitism by Cape honeybee (Apis mellifera capensis) workers. Workers often join neighboring colonies by drifting, but long-range drifting (dispersal) to colonies far away from the maternal nests also rarely occurs. We tested the impact of queenstate and taxon of mother and host colonies on drifting and dispersing of workers and on the hosting of these workers in A. m. capensis, A. m. scutellata, and their natural hybrids. Workers were paint-marked according to colony and reintroduced into their queenright or queenless mother colonies. After 10 days, 579 out of 12,034 labeled workers were recaptured in foreign colonies. We found that drifting and dispersing represent different behaviors, which were differently affected by taxon and queenstate of both mother and host colonies. Hybrid workers drifted more often than A. m. capensis and A. m. scutellata. However, A. m. capensis workers dispersed more often than A. m. scutellata and the hybrids combined, and A. m. scutellata workers also dispersed more frequently than the hybrids. Dispersers from queenright A. m. capensis colonies were more often found in queenless host colonies and vice versa, indicating active host searching and/or a queenstate-discriminating guarding mechanism. Our data show that A. m. capensis workers disperse significantly more often than other races of A. mellifera, suggesting that dispersing represents a host finding mechanism. The lack of dispersal in hybrids and different hosting mechanisms of foreign workers by hybrid colonies may also be responsible for the stability of the natural hybrid zone between A. m. capensis and A. m. scutellata.
- Full Text:
- Authors: Neumann, Peter , Radloff, Sarah E , Moritz, Robin F A , Hepburn, H Randall , Reece, Sacha L
- Date: 2001
- Language: English
- Type: text , Article
- Identifier: vital:6907 , http://hdl.handle.net/10962/d1011860
- Description: We studied possible host finding and resistance mechanisms of host colonies in the context of social parasitism by Cape honeybee (Apis mellifera capensis) workers. Workers often join neighboring colonies by drifting, but long-range drifting (dispersal) to colonies far away from the maternal nests also rarely occurs. We tested the impact of queenstate and taxon of mother and host colonies on drifting and dispersing of workers and on the hosting of these workers in A. m. capensis, A. m. scutellata, and their natural hybrids. Workers were paint-marked according to colony and reintroduced into their queenright or queenless mother colonies. After 10 days, 579 out of 12,034 labeled workers were recaptured in foreign colonies. We found that drifting and dispersing represent different behaviors, which were differently affected by taxon and queenstate of both mother and host colonies. Hybrid workers drifted more often than A. m. capensis and A. m. scutellata. However, A. m. capensis workers dispersed more often than A. m. scutellata and the hybrids combined, and A. m. scutellata workers also dispersed more frequently than the hybrids. Dispersers from queenright A. m. capensis colonies were more often found in queenless host colonies and vice versa, indicating active host searching and/or a queenstate-discriminating guarding mechanism. Our data show that A. m. capensis workers disperse significantly more often than other races of A. mellifera, suggesting that dispersing represents a host finding mechanism. The lack of dispersal in hybrids and different hosting mechanisms of foreign workers by hybrid colonies may also be responsible for the stability of the natural hybrid zone between A. m. capensis and A. m. scutellata.
- Full Text:
An annotated bibliography of the Cape honeybee, Apis mellilera capensis Eschscholtz (Hymenoptera: Apidae)
- Hepburn, H Randall, Guye, Sally G
- Authors: Hepburn, H Randall , Guye, Sally G
- Date: 1993
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451818 , vital:75079 , https://hdl.handle.net/10520/AJA10213589_64
- Description: An annotated bibliography of all known publications on the biology of the Cape honeybee, Apis mellifera capensis Eschscholtz, is presented. The record covers the period 1778 to 1993 and includes 313 entries. One half of these publications have appeared during the last decade.
- Full Text:
- Authors: Hepburn, H Randall , Guye, Sally G
- Date: 1993
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451818 , vital:75079 , https://hdl.handle.net/10520/AJA10213589_64
- Description: An annotated bibliography of all known publications on the biology of the Cape honeybee, Apis mellifera capensis Eschscholtz, is presented. The record covers the period 1778 to 1993 and includes 313 entries. One half of these publications have appeared during the last decade.
- Full Text:
- «
- ‹
- 1
- ›
- »