The enzymology of enhanced hydrolysis within the biosulphidogenic recycling sludge bed reactor (RSBR)
- Authors: Enongene, Godlove Nkwelle
- Date: 2004
- Subjects: Hydrolysis , Sewage sludge , Sewage -- Purification -- Anaerobic treatment , Water -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4132 , http://hdl.handle.net/10962/d1015744
- Description: The hydrolysis of complex organic heteropolymers contained in municipal wastewater to simpler monomers by extracellular hydrolytic enzymes is generally considered the rate-limiting step of the biodegradation process. Previous studies of the Recycling Sludge Bed Reactor (RSBR) revealed that the hydrolysis of complex particulate organics, such as those contained in primary sludge (PS), was enhanced under anaerobic biosulphidogenic conditions. Although the mechanism was not fully understood, it appeared to involve the interaction of sulfide and sludge flocs. The current study was conducted using a 3500 ml laboratory-scale RSBR fed sieved PS at a loading rate of 0.5 kg COD/m³.day and an initial chemical oxygen demand (COD) to sulfate ratio (COD:SO₄) of 1:1. There was no significant accumulation of undigested sludge in the reactor over the 60-day experimental period and the quantity of SO₄ reduced indicated that the yield of soluble products from PS was at least as high as those reported previously for this system (> 50%). In the current study, the specific activities of a range of extracellular hydrolytic enzymes (L-alanine aminopeptidase, L-leucine aminopeptidase, arylsulphatase, α-glucosidase, β- glucosidase, protease and lipase) were monitored in a sulfide gradient within a biosulphidogenic RSBR. Data obtained indicated that the specific enzymatic activities increased with the depth of the RSBR and also correlated with a number of the physicochemical parameters including sulfide, alkalinity and sulfate. The activities of α- glucosidase and β-glucosidase were higher than that of the other enzymes studied. Lipase activity was relatively low and studies conducted on the enzyme-enzyme interaction using specific enzyme inhibitors indicated that lipases were probably being digested by the proteases. Further studies to determine the impact of sulfide on the enzymes, showed an increase in the enzyme activity with increasing sulfide concentration. Possible direct affects were investigated by looking for changes in the Michaelis constant (Km) and the maximal velocity (Vmax) of the crude enzymes with varying sulfide concentrations (250, 400 and 500 mg/l) using natural and synthetic substrates. The results showed no significant difference in both the Km and the Vmax for any of the hydrolytic enzymes except for the protease. The latter showed a statistically significant increase in the Km with increasing sulfide concentration. Although this indicated a direct interaction, this difference was not large enough to be of biochemical significance and was consequently not solely responsible for the enhanced hydrolysis observed in the RSBR. Investigation into the floc characteristics indicated that the biosulphidogenic RSBR flocs were generally small in size and became more dendritic with the depth of the RSBR. Based on the above data, the previously proposed descriptive models of enhanced hydrolysis of particulate organic matter in a biosulphidogenic RSBR has been revised. It is thought that the effect of sulfide on the hydrolysis step is primarily indirect and that the reduction in floc size and alteration of the floc shape to a more dendritic form is central to the success of the process.
- Full Text:
- Authors: Enongene, Godlove Nkwelle
- Date: 2004
- Subjects: Hydrolysis , Sewage sludge , Sewage -- Purification -- Anaerobic treatment , Water -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4132 , http://hdl.handle.net/10962/d1015744
- Description: The hydrolysis of complex organic heteropolymers contained in municipal wastewater to simpler monomers by extracellular hydrolytic enzymes is generally considered the rate-limiting step of the biodegradation process. Previous studies of the Recycling Sludge Bed Reactor (RSBR) revealed that the hydrolysis of complex particulate organics, such as those contained in primary sludge (PS), was enhanced under anaerobic biosulphidogenic conditions. Although the mechanism was not fully understood, it appeared to involve the interaction of sulfide and sludge flocs. The current study was conducted using a 3500 ml laboratory-scale RSBR fed sieved PS at a loading rate of 0.5 kg COD/m³.day and an initial chemical oxygen demand (COD) to sulfate ratio (COD:SO₄) of 1:1. There was no significant accumulation of undigested sludge in the reactor over the 60-day experimental period and the quantity of SO₄ reduced indicated that the yield of soluble products from PS was at least as high as those reported previously for this system (> 50%). In the current study, the specific activities of a range of extracellular hydrolytic enzymes (L-alanine aminopeptidase, L-leucine aminopeptidase, arylsulphatase, α-glucosidase, β- glucosidase, protease and lipase) were monitored in a sulfide gradient within a biosulphidogenic RSBR. Data obtained indicated that the specific enzymatic activities increased with the depth of the RSBR and also correlated with a number of the physicochemical parameters including sulfide, alkalinity and sulfate. The activities of α- glucosidase and β-glucosidase were higher than that of the other enzymes studied. Lipase activity was relatively low and studies conducted on the enzyme-enzyme interaction using specific enzyme inhibitors indicated that lipases were probably being digested by the proteases. Further studies to determine the impact of sulfide on the enzymes, showed an increase in the enzyme activity with increasing sulfide concentration. Possible direct affects were investigated by looking for changes in the Michaelis constant (Km) and the maximal velocity (Vmax) of the crude enzymes with varying sulfide concentrations (250, 400 and 500 mg/l) using natural and synthetic substrates. The results showed no significant difference in both the Km and the Vmax for any of the hydrolytic enzymes except for the protease. The latter showed a statistically significant increase in the Km with increasing sulfide concentration. Although this indicated a direct interaction, this difference was not large enough to be of biochemical significance and was consequently not solely responsible for the enhanced hydrolysis observed in the RSBR. Investigation into the floc characteristics indicated that the biosulphidogenic RSBR flocs were generally small in size and became more dendritic with the depth of the RSBR. Based on the above data, the previously proposed descriptive models of enhanced hydrolysis of particulate organic matter in a biosulphidogenic RSBR has been revised. It is thought that the effect of sulfide on the hydrolysis step is primarily indirect and that the reduction in floc size and alteration of the floc shape to a more dendritic form is central to the success of the process.
- Full Text:
Interaction of selected fungicides with insoluble bovine skin collagen in the presence of the non ionic surfactant Triton X-100
- Authors: Fowler, William Mackenzie
- Date: 1992
- Subjects: Collagenases -- Research Fungicides -- Research Hides and skins -- Preservation
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4318 , http://hdl.handle.net/10962/d1004976
- Description: In the leather industry fungicides are often used for the protection of wet-blue leather. These fungicides are usually only sparingly soluble and are therefore formulated together with surfactants in order to increase their solubility and to ensure an even distribution over the surface of the hide after treatment. Solutions containing both fungicides and surfactant are complex. The nature of these solutions was investigated. By means of UV/Vis spectroscopy and viscometry it was shown that the surfactant and fungicides form micelles and mixed micelles in solution. The nature of these micelles and mixed micelles was dependent on the solution temperature as well as on the concentrations of the surfactant and fungicides. At the higher temperatures and concentrations transition to large, possibly rod-shaped, mixed micelles occurred. The interaction between the selected fungicides 2-(thiocyanomethylthio)benzothiazole and n-octyl-4-isothiazol-3-one with bovine skin collagen in the form of both limed and lightly chromed hide powder in the presence of the non ionic surfactant Triton X -100 was investigated. Fungicide uptake was determined by difference measurements on the float solutions at regular intervals during treatment. Binding was rapid with equilibrium being established within the first six hours even for the solutions with the highest surfactant concentration. Binding failed to follow a normal mass-action binding-type isotherm approaching a saturation limit, but increased continuously indicating a co-operative effect whereby binding site affinity actually increased with the amount of ligand bound. Binding was accompanied by a drop in the free surfactant in the solution at the higher biocide levels indicating the formation of complex mixed micelles which bind to the collagen fibres. The uptake and antifungal activity of commercial fomulations of the fungicides on chrome-tanned wet-blue leather was investigated at various treatment temperatures. At lower fungicide treatment concentrations, binding tended to follow a typical mass-action type binding isotherm, increasing slightly with temperature. At higher float concentrations, an inflexion point was apparent beyond which uptake showed a marked increase with concentration. This inflexion point, signifying a change in binding characteristics, occurred at progressively lower concentrations with increasing temperature. Antifungal activity in terms of storage periods to onset of fungal growth was determined on the wet-blue leather cuttings immediately after treatment and drainage and also on sample discs after exhaustive extraction of free fungicide using dichloromethane. Storage performance testing of the various treated wet-blue leathers was carried out by different methods. Residual protective periods showed a curvilinear increase with dosage offer and surface uptake. In the low dosage range treatment temperature had only a relatively slight effect in promoting uptake and improving storage protection. At higher dosages, the influence of temperature on uptake and storage protection was greater due to the increase in surface binding of the fungicides at the elevated temperatures. Only a portion of the fungicide uptake was recovered by direct solvent extraction of the treated wet-blue leather. Solvent extraction reduced storage margins. The storage response in relation to fungicide content was, however comparable after extraction, indicating that both irreversibly bound and physically associated fungicide offered effective protection. Results of the study provide further insight into the mode of interaction of fungicide emulsion dispersion with bovine skin collagen, and the importance of the emulsion dispersions and its stability in determining the uptake of fungicide.
- Full Text:
- Authors: Fowler, William Mackenzie
- Date: 1992
- Subjects: Collagenases -- Research Fungicides -- Research Hides and skins -- Preservation
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4318 , http://hdl.handle.net/10962/d1004976
- Description: In the leather industry fungicides are often used for the protection of wet-blue leather. These fungicides are usually only sparingly soluble and are therefore formulated together with surfactants in order to increase their solubility and to ensure an even distribution over the surface of the hide after treatment. Solutions containing both fungicides and surfactant are complex. The nature of these solutions was investigated. By means of UV/Vis spectroscopy and viscometry it was shown that the surfactant and fungicides form micelles and mixed micelles in solution. The nature of these micelles and mixed micelles was dependent on the solution temperature as well as on the concentrations of the surfactant and fungicides. At the higher temperatures and concentrations transition to large, possibly rod-shaped, mixed micelles occurred. The interaction between the selected fungicides 2-(thiocyanomethylthio)benzothiazole and n-octyl-4-isothiazol-3-one with bovine skin collagen in the form of both limed and lightly chromed hide powder in the presence of the non ionic surfactant Triton X -100 was investigated. Fungicide uptake was determined by difference measurements on the float solutions at regular intervals during treatment. Binding was rapid with equilibrium being established within the first six hours even for the solutions with the highest surfactant concentration. Binding failed to follow a normal mass-action binding-type isotherm approaching a saturation limit, but increased continuously indicating a co-operative effect whereby binding site affinity actually increased with the amount of ligand bound. Binding was accompanied by a drop in the free surfactant in the solution at the higher biocide levels indicating the formation of complex mixed micelles which bind to the collagen fibres. The uptake and antifungal activity of commercial fomulations of the fungicides on chrome-tanned wet-blue leather was investigated at various treatment temperatures. At lower fungicide treatment concentrations, binding tended to follow a typical mass-action type binding isotherm, increasing slightly with temperature. At higher float concentrations, an inflexion point was apparent beyond which uptake showed a marked increase with concentration. This inflexion point, signifying a change in binding characteristics, occurred at progressively lower concentrations with increasing temperature. Antifungal activity in terms of storage periods to onset of fungal growth was determined on the wet-blue leather cuttings immediately after treatment and drainage and also on sample discs after exhaustive extraction of free fungicide using dichloromethane. Storage performance testing of the various treated wet-blue leathers was carried out by different methods. Residual protective periods showed a curvilinear increase with dosage offer and surface uptake. In the low dosage range treatment temperature had only a relatively slight effect in promoting uptake and improving storage protection. At higher dosages, the influence of temperature on uptake and storage protection was greater due to the increase in surface binding of the fungicides at the elevated temperatures. Only a portion of the fungicide uptake was recovered by direct solvent extraction of the treated wet-blue leather. Solvent extraction reduced storage margins. The storage response in relation to fungicide content was, however comparable after extraction, indicating that both irreversibly bound and physically associated fungicide offered effective protection. Results of the study provide further insight into the mode of interaction of fungicide emulsion dispersion with bovine skin collagen, and the importance of the emulsion dispersions and its stability in determining the uptake of fungicide.
- Full Text:
- «
- ‹
- 1
- ›
- »