Inhibitory effects of selected cannabinoids against dipeptidyl peptidase IV, an enzyme linked to type 2 diabetes
- Mkabayi, Lithalethu, Viljoen, Zenobia, Krause, Rui W M, Lobb, Kevin A, Pletschke, Brett I, Frost, Carminita L
- Authors: Mkabayi, Lithalethu , Viljoen, Zenobia , Krause, Rui W M , Lobb, Kevin A , Pletschke, Brett I , Frost, Carminita L
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452760 , vital:75168 , xlink:href="https://doi.org/10.1016/j.heliyon.2023.e23289"
- Description: Ethnopharmacological relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant. Aim of the study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes. However, some of the synthetic inhibitors for this enzyme available on the market may cause undesirable side effects. Therefore, it is important to identify new inhibitors of DPP-IV and to understand their interaction with this enzyme.
- Full Text:
- Date Issued: 2024
- Authors: Mkabayi, Lithalethu , Viljoen, Zenobia , Krause, Rui W M , Lobb, Kevin A , Pletschke, Brett I , Frost, Carminita L
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452760 , vital:75168 , xlink:href="https://doi.org/10.1016/j.heliyon.2023.e23289"
- Description: Ethnopharmacological relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant. Aim of the study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes. However, some of the synthetic inhibitors for this enzyme available on the market may cause undesirable side effects. Therefore, it is important to identify new inhibitors of DPP-IV and to understand their interaction with this enzyme.
- Full Text:
- Date Issued: 2024
Inhibiting human dipeptidyl peptidase IV using cannabinoids and Leonotis leonurus extracts as a potential therapy for the management of diabetes
- Mkabayi, Lithalethu, Viljoen, Zenobia, Lobb, Kevin A, Pletschke, Brett I, Frost, Carminita L
- Authors: Mkabayi, Lithalethu , Viljoen, Zenobia , Lobb, Kevin A , Pletschke, Brett I , Frost, Carminita L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452745 , vital:75167 , xlink:href="https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-1773924"
- Description: Diabetes is a chronic metabolic disorder that has been shown to affect a growing number of people worldwide. Controlling blood glucose levels is one of the possible strategies to treat type 2 diabetes mellitus (T2DM). It has been established that the inhibition of dipeptidyl peptidase IV (DPP-IV) prolongs the activity of incretin hormones, which serve as key stimulators of insulin secretion and regulation of blood glucose levels. Although several synthetic DPP-IV inhibitors are available, there is still a need for naturally sourced inhibitors that have fewer to no undesirable side effects. In this study, cannabinoids and Leonotis leonurus aqueous extracts were evaluated for their inhibitory effects against recombinant human DPP-IV. Their potential inhibition mechanism was explored using in vitro and in silico approaches. All tested cannabinoids and L. leonurus aqueous extracts showed significant inhibitory activity against DPP-IV. Phytochemical analysis of L. leonurus extract indicated the presence of diterpenoids and alkaloids, which might contribute to the inhibitory activity. In molecular docking studies, among different constituents known in L. leonurus, luteolin and marrubiin showed binding energy of -7.2 kcal/mol and cannabinoids (cannabidiol, cannabigerol, cannabinol and Δ9-tetrahydrocannabinol) showed binding energies ranging from -6.5 to -8.2 kcal/mol. Molecular dynamics revealed that all tested compounds formed stable complexes with the enzyme during 100 ns simulation, indicating that they are good ligands. This study provided preliminary evidence for the potential application of the selected cannabinoids and L. leonurus in maintaining glucose homeostasis, suggesting that they could be suitable therapeutic candidates for managing T2DM.
- Full Text:
- Date Issued: 2023
- Authors: Mkabayi, Lithalethu , Viljoen, Zenobia , Lobb, Kevin A , Pletschke, Brett I , Frost, Carminita L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452745 , vital:75167 , xlink:href="https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-1773924"
- Description: Diabetes is a chronic metabolic disorder that has been shown to affect a growing number of people worldwide. Controlling blood glucose levels is one of the possible strategies to treat type 2 diabetes mellitus (T2DM). It has been established that the inhibition of dipeptidyl peptidase IV (DPP-IV) prolongs the activity of incretin hormones, which serve as key stimulators of insulin secretion and regulation of blood glucose levels. Although several synthetic DPP-IV inhibitors are available, there is still a need for naturally sourced inhibitors that have fewer to no undesirable side effects. In this study, cannabinoids and Leonotis leonurus aqueous extracts were evaluated for their inhibitory effects against recombinant human DPP-IV. Their potential inhibition mechanism was explored using in vitro and in silico approaches. All tested cannabinoids and L. leonurus aqueous extracts showed significant inhibitory activity against DPP-IV. Phytochemical analysis of L. leonurus extract indicated the presence of diterpenoids and alkaloids, which might contribute to the inhibitory activity. In molecular docking studies, among different constituents known in L. leonurus, luteolin and marrubiin showed binding energy of -7.2 kcal/mol and cannabinoids (cannabidiol, cannabigerol, cannabinol and Δ9-tetrahydrocannabinol) showed binding energies ranging from -6.5 to -8.2 kcal/mol. Molecular dynamics revealed that all tested compounds formed stable complexes with the enzyme during 100 ns simulation, indicating that they are good ligands. This study provided preliminary evidence for the potential application of the selected cannabinoids and L. leonurus in maintaining glucose homeostasis, suggesting that they could be suitable therapeutic candidates for managing T2DM.
- Full Text:
- Date Issued: 2023
Interaction of silver nanoparticles with catechol O-methyltransferase: Spectroscopic and simulation analyses
- Usman, Aminu, Lobb, Kevin A, Pletschke, Brett I, Whiteley, Christopher G, Wilhelmi, Brendan S
- Authors: Usman, Aminu , Lobb, Kevin A , Pletschke, Brett I , Whiteley, Christopher G , Wilhelmi, Brendan S
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451095 , vital:75018 , xlink:href=" https://doi.org/10.1016/j.bbrep.2021.101013"
- Description: Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol Omethyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β− structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme.
- Full Text:
- Date Issued: 2021
- Authors: Usman, Aminu , Lobb, Kevin A , Pletschke, Brett I , Whiteley, Christopher G , Wilhelmi, Brendan S
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451095 , vital:75018 , xlink:href=" https://doi.org/10.1016/j.bbrep.2021.101013"
- Description: Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol Omethyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β− structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme.
- Full Text:
- Date Issued: 2021
A novel dimeric exoglucanase (GH5_38)
- Mafa, Mpho S, Dirr, Heinrich W, Malgas, Samkelo, Krause, Rui W M, Pletschke, Brett I
- Authors: Mafa, Mpho S , Dirr, Heinrich W , Malgas, Samkelo , Krause, Rui W M , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193976 , vital:45412 , xlink:href="https://doi.org/10.3390/molecules25030746"
- Description: An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.7 U/mg protein, respectively) and lichenin (24.5 and 23.7 U/mg protein, respectively). They displayed a broad optimum pH range from 5.5 to 7 and a temperature optimum from 40 to 60 °C. Kinetic studies demonstrated that Exg-D had a higher affinity towards β-glucan, with a Km of 7.9 mg/mL and a kcat of 117.2 s−1, compared to lichenin which had a Km of 21.5 mg/mL and a kcat of 70.0 s−1. The circular dichroism profile of Exg-D showed that its secondary structure consisted of 11% α-helices, 36% β-strands and 53% coils. Exg-D performed transglycosylation using p-nitrophenyl cellobioside as a glycosyl donor and several primary alcohols as acceptors to produce methyl-, ethyl- and propyl-cellobiosides. These products were identified and quantified via thin-layer chromatography (TLC) and liquid chromatography–mass spectrometry (LC-MS). We concluded that Exg-D is a novel and promising oligomeric glycoside hydrolase for the one-step synthesis of alkyl glycosides with more than one monosaccharide unit.
- Full Text:
- Date Issued: 2020
- Authors: Mafa, Mpho S , Dirr, Heinrich W , Malgas, Samkelo , Krause, Rui W M , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193976 , vital:45412 , xlink:href="https://doi.org/10.3390/molecules25030746"
- Description: An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.7 U/mg protein, respectively) and lichenin (24.5 and 23.7 U/mg protein, respectively). They displayed a broad optimum pH range from 5.5 to 7 and a temperature optimum from 40 to 60 °C. Kinetic studies demonstrated that Exg-D had a higher affinity towards β-glucan, with a Km of 7.9 mg/mL and a kcat of 117.2 s−1, compared to lichenin which had a Km of 21.5 mg/mL and a kcat of 70.0 s−1. The circular dichroism profile of Exg-D showed that its secondary structure consisted of 11% α-helices, 36% β-strands and 53% coils. Exg-D performed transglycosylation using p-nitrophenyl cellobioside as a glycosyl donor and several primary alcohols as acceptors to produce methyl-, ethyl- and propyl-cellobiosides. These products were identified and quantified via thin-layer chromatography (TLC) and liquid chromatography–mass spectrometry (LC-MS). We concluded that Exg-D is a novel and promising oligomeric glycoside hydrolase for the one-step synthesis of alkyl glycosides with more than one monosaccharide unit.
- Full Text:
- Date Issued: 2020
Combination of CTec2 and GH5 or GH26 Endo-Mannanases for Effective Lignocellulosic Biomass Degradation
- Malgas, Samkelo, Pletschke, Brett I
- Authors: Malgas, Samkelo , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429397 , vital:72607 , xlink:href="https://doi.org/10.3390/catal10101193"
- Description: Among endo-mannanases, glycoside hydrolase (GH) family 26 enzymes have been shown to be more catalytically active than GH5 enzymes on mannans. However, only GH5 endo-mannanases have been used for the formulation of enzyme cocktails. In this study, Bacillus sp.-derived GH5 and GH26 endo-mannanases were comparatively analysed biochemically for their synergistic action with a commercial cellulase blend, CTec2, during pre-treated lignocellulose degradation. Substrate specificity and thermo-stability studies on mannan substrates showed that GH26 endo-mannanase was more catalytically active and stable than GH5. GH26 also exhibited higher binding affinity for mannan than GH5, while GH5 showed more affinity for lignocellulosic substrates than GH26. Applying the endo-mannanases in combination with CTec2 for lignocellulose degradation led to synergism with a 1.3-fold increase in reducing sugar release compared to when CTec2 was used alone. This study showed that using the activity of endo-mannanases displayed with model substrates is a poor predictor of their activity and synergism on complex lignocelluloses.
- Full Text:
- Date Issued: 2020
- Authors: Malgas, Samkelo , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429397 , vital:72607 , xlink:href="https://doi.org/10.3390/catal10101193"
- Description: Among endo-mannanases, glycoside hydrolase (GH) family 26 enzymes have been shown to be more catalytically active than GH5 enzymes on mannans. However, only GH5 endo-mannanases have been used for the formulation of enzyme cocktails. In this study, Bacillus sp.-derived GH5 and GH26 endo-mannanases were comparatively analysed biochemically for their synergistic action with a commercial cellulase blend, CTec2, during pre-treated lignocellulose degradation. Substrate specificity and thermo-stability studies on mannan substrates showed that GH26 endo-mannanase was more catalytically active and stable than GH5. GH26 also exhibited higher binding affinity for mannan than GH5, while GH5 showed more affinity for lignocellulosic substrates than GH26. Applying the endo-mannanases in combination with CTec2 for lignocellulose degradation led to synergism with a 1.3-fold increase in reducing sugar release compared to when CTec2 was used alone. This study showed that using the activity of endo-mannanases displayed with model substrates is a poor predictor of their activity and synergism on complex lignocelluloses.
- Full Text:
- Date Issued: 2020
Delineating functional properties of a cello-oligosaccharide and Bglucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for B-(1,3)-(1,4)-glucan degradation
- Mafa, Mpho S, Malgas, Samkelo, Rashamuse, Konanani, Pletschke, Brett I
- Authors: Mafa, Mpho S , Malgas, Samkelo , Rashamuse, Konanani , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429425 , vital:72609 , xlink:href="https://doi.org/10.1016/j.carres.2020.108081"
- Description: Cellulase cocktails formulated to degrade crystalline cellulose generally contain cellobiohydrolases (CBHs), referred to as CBHI (Cel7A) and CBHII (Cel6A), as the major constituents. The combined hydrolytic activities of CBHI and CBHII improve the release of fermentable sugars (β-1,4-cellobiose as the main product) from crystalline cellulose. In this study, a novel cellobiohydrolase (Exg-D) sourced from a metagenome of hindgut bacterial symbionts of a termite was heterologouly expressed, purified, and functionally characterised. Exg-D specific activity was higher on insoluble barley β-glucan (38.94 U/mg protein), soluble wheat flour β-glucan (12.71 U/mg protein) and oat β-glucan (8.89 U/mg protein) compared to cellulosic substrates; Avicel and CMC. We further explored Exg-D activity on the unpretreated or NaOH-pretreated (mercerised) Avicel and compared its activity to commercially available CBHI and CBHII on these celluloses. CBHI displayed the highest activity of 4.74 U/mg protein on mercerised cellulose followed by CBHII (2.14 U/mg protein), while Exg-D activity on untreated and mercerised cellulose was 1.66 and 1.67 U/mg protein, respectively. The high activity of CBHI was supported by binding assays, which revealed that CBHI has a higher binding capacity towards crystalline cellulose compared to Exg-D and CBHII. Only CBHI and CBHII showed synergism during the hydrolysis of mercerised Avicel, showing a degree of synergy (DS) of about 1.299 and yielded about 1.43 μmol/ml of reducing sugars higher than control. In contrast, Exg-D and CBHII displayed synergism during β-glucan degradation, displaying a DS of about 1.22. Thus, we propose that Exg-D should only be used synergistically with other CBHs to degrade mixed linked-β-(1,3)-(1,4)-glucan.
- Full Text:
- Date Issued: 2020
- Authors: Mafa, Mpho S , Malgas, Samkelo , Rashamuse, Konanani , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429425 , vital:72609 , xlink:href="https://doi.org/10.1016/j.carres.2020.108081"
- Description: Cellulase cocktails formulated to degrade crystalline cellulose generally contain cellobiohydrolases (CBHs), referred to as CBHI (Cel7A) and CBHII (Cel6A), as the major constituents. The combined hydrolytic activities of CBHI and CBHII improve the release of fermentable sugars (β-1,4-cellobiose as the main product) from crystalline cellulose. In this study, a novel cellobiohydrolase (Exg-D) sourced from a metagenome of hindgut bacterial symbionts of a termite was heterologouly expressed, purified, and functionally characterised. Exg-D specific activity was higher on insoluble barley β-glucan (38.94 U/mg protein), soluble wheat flour β-glucan (12.71 U/mg protein) and oat β-glucan (8.89 U/mg protein) compared to cellulosic substrates; Avicel and CMC. We further explored Exg-D activity on the unpretreated or NaOH-pretreated (mercerised) Avicel and compared its activity to commercially available CBHI and CBHII on these celluloses. CBHI displayed the highest activity of 4.74 U/mg protein on mercerised cellulose followed by CBHII (2.14 U/mg protein), while Exg-D activity on untreated and mercerised cellulose was 1.66 and 1.67 U/mg protein, respectively. The high activity of CBHI was supported by binding assays, which revealed that CBHI has a higher binding capacity towards crystalline cellulose compared to Exg-D and CBHII. Only CBHI and CBHII showed synergism during the hydrolysis of mercerised Avicel, showing a degree of synergy (DS) of about 1.299 and yielded about 1.43 μmol/ml of reducing sugars higher than control. In contrast, Exg-D and CBHII displayed synergism during β-glucan degradation, displaying a DS of about 1.22. Thus, we propose that Exg-D should only be used synergistically with other CBHs to degrade mixed linked-β-(1,3)-(1,4)-glucan.
- Full Text:
- Date Issued: 2020
Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, Éø-glucosidase
- Daub, Chantal D, Mabate, Blessing, Malgas, Samkelo, Pletschke, Brett I
- Authors: Daub, Chantal D , Mabate, Blessing , Malgas, Samkelo , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425982 , vital:72304 , xlink:href="https://doi.org/10.1016/j.ijbiomac.2020.02.161"
- Description: Ecklonia maxima, an endemic South African seaweed, is a potential source of beneficial bioactive compounds. Among these compounds, fucoidan, a sulphated polysaccharide has a wide range of bioactivities including anti-diabetic activity. In this study, fucoidan was extracted from E. maxima by the hot water extraction method and then characterised by colorimetric assays for sugar composition. The extraction from E. maxima yielded 6.89% fucoidan which was found to contain 4.45 ± 0.25% L-fucose and 6.01 ± 0.53% sulphate. The water extracted E. maxima fucoidan had a low molecular weight of approximately 10 kDa. Structural studies (FT-IR, NMR and XRD) confirmed the structure and integrity of the fucoidan to be similar to previously studied fucoidans in literature. Finally, the activities of starch digestive enzymes; α-amylase and α-glucosidase, were investigated in the presence of the E. maxima fucoidan extract. Fucoidan from E. maxima was observed to be a potent mixed-type inhibitor of α-glucosidase with an IC50 range of 0.27–0.31 mg.ml-1, which was significantly lower than the commercial anti-diabetic standard, acarbose. Our present study demonstrated that fucoidan from E. maxima is a more powerful inhibitor compared to some standard anti-diabetic compounds and thus shows great potential for managing type 2 diabetes.
- Full Text:
- Date Issued: 2020
Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, Éø-glucosidase
- Authors: Daub, Chantal D , Mabate, Blessing , Malgas, Samkelo , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425982 , vital:72304 , xlink:href="https://doi.org/10.1016/j.ijbiomac.2020.02.161"
- Description: Ecklonia maxima, an endemic South African seaweed, is a potential source of beneficial bioactive compounds. Among these compounds, fucoidan, a sulphated polysaccharide has a wide range of bioactivities including anti-diabetic activity. In this study, fucoidan was extracted from E. maxima by the hot water extraction method and then characterised by colorimetric assays for sugar composition. The extraction from E. maxima yielded 6.89% fucoidan which was found to contain 4.45 ± 0.25% L-fucose and 6.01 ± 0.53% sulphate. The water extracted E. maxima fucoidan had a low molecular weight of approximately 10 kDa. Structural studies (FT-IR, NMR and XRD) confirmed the structure and integrity of the fucoidan to be similar to previously studied fucoidans in literature. Finally, the activities of starch digestive enzymes; α-amylase and α-glucosidase, were investigated in the presence of the E. maxima fucoidan extract. Fucoidan from E. maxima was observed to be a potent mixed-type inhibitor of α-glucosidase with an IC50 range of 0.27–0.31 mg.ml-1, which was significantly lower than the commercial anti-diabetic standard, acarbose. Our present study demonstrated that fucoidan from E. maxima is a more powerful inhibitor compared to some standard anti-diabetic compounds and thus shows great potential for managing type 2 diabetes.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »