Population structure, growth and recruitment of two exploited infralittoral molluscs (Haliotis midae and Turbo sarmaticus) along the south east coast, South Africa
- Authors: Proudfoot, Lee-Anne
- Date: 2007
- Subjects: Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5744 , http://hdl.handle.net/10962/d1005430 , Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Description: The two most frequently exploited species along the south east coast of South Africa are the gastropods, Haliotis midae (abalone) and Turbo sarmaticus (alikreukel). H. midae is a high valued commercial species, and suffers intense levels of illegal fishing. T. sarmaticus however, has no commercial value but is the preferred food item for impoverished subsistence communities. Owing to the fact that no legal commercial fishery exists for either species along the south coast, very few studies have been undertaken, especially in the heavily exploited infralittoral. Infralittoral size frequency distributions for both species revealed significant variation in density and size among sites of varying exploitation pressure. Densities ranged between 0 – 2.23 m⁻² (H. midae) and 0.03 – 4.93 m⁻² (T. sarmaticus) and maximum shell lengths ranged from 49.4 – 153.5 mm (H. midae) and 28.3 – 104.4 mm (T. sarmaticus). Relatively high densities and large sizes were found in marine reserves and secluded areas, and low densities and small sizes at sites near to large population centres and within the former Ciskei homeland region. Mean size of the largest 10% of the population, total density and sexually mature density were significantly related to exploitation predictors for both species. In addition, densities of H. midae juveniles were significantly related to exploitation predictors, suggesting that recruitment may be suppressed at the most exploited sites. Exploitation of T. sarmaticus tended to be localized with refuge and subtidal populations persisting. H. midae exploitation was however, far more extensive and intense. Growth of H. midae was investigated using three methods; mark-recapture, cohort analysis and growth banding analysis at Kowie Rocks, Port Alfred. The most useful of these methods for determining growth was a new technique described for growth banding analysis; which was validated using cohort analysis and measurements of shells of known age. This technique was less time consuming and labour intensive than previously described methods. Abalone growth was best described by the Schnute (1981) growth function. Systematic geographic variation in growth was observed for 10 sites along the South African coastline. Significant differences in growth among sites existed for animals between 0-4 years (P < 0.0001) and 4-6 years (P < 0.0001), and in the mean maximum sizes attained (P < 0.001). In general, abalone from the south east/east coast were found to have faster growth rates, smaller mean maximum sizes and attained sexual maturity earlier than those along the south west/ west coast. Haliotis midae recruit and juvenile densities were found to differ significantly among sites of varying exploitation pressure (P < 0.0001) and among months for recruit densities (P < 0.001). Exploited sites had low recruit and juvenile densities compared to unexploited sites and peak recruitment occurred during October/ November 2005. Recruit densities were significantly related to infralittoral adult densities during two of the three sampling months (P<0.05), when recruitment was low. No relationship was observed during the period of high recruitment, with all sites receiving high recruit densities. It was concluded that variation in recruit densities was the result of a combination of both density-dependent relationships (i.e. local spawner density and temporal variability in recruitment intensity) and the possible dispersal capabilities of H. midae. In addition, it was concluded that at present recruitment overfishing was not occurring along the south east coast. Post-recruitment mortality rates were variable but relatively constant, with hypothetical percentage survival and density curves revealing high rates and similar mortality curves among sites. Variation in juvenile densities was consequently a result of initial recruit densities and not variation in post-recruitment mortality. T. sarmaticus populations were found to be regionally sustainable and persisted along the south east coast due to adjacent intertidal and subtidal refuge populations. However, H. midae populations are becoming decimated along the south east coast. From the information obtained in this study new management proposals were suggested and discussed, such as closed areas and region-based management fisheries together with stock enhancement. These suggestions may prove to be feasible alternatives to present management strategies.
- Full Text:
- Date Issued: 2007
- Authors: Proudfoot, Lee-Anne
- Date: 2007
- Subjects: Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5744 , http://hdl.handle.net/10962/d1005430 , Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Description: The two most frequently exploited species along the south east coast of South Africa are the gastropods, Haliotis midae (abalone) and Turbo sarmaticus (alikreukel). H. midae is a high valued commercial species, and suffers intense levels of illegal fishing. T. sarmaticus however, has no commercial value but is the preferred food item for impoverished subsistence communities. Owing to the fact that no legal commercial fishery exists for either species along the south coast, very few studies have been undertaken, especially in the heavily exploited infralittoral. Infralittoral size frequency distributions for both species revealed significant variation in density and size among sites of varying exploitation pressure. Densities ranged between 0 – 2.23 m⁻² (H. midae) and 0.03 – 4.93 m⁻² (T. sarmaticus) and maximum shell lengths ranged from 49.4 – 153.5 mm (H. midae) and 28.3 – 104.4 mm (T. sarmaticus). Relatively high densities and large sizes were found in marine reserves and secluded areas, and low densities and small sizes at sites near to large population centres and within the former Ciskei homeland region. Mean size of the largest 10% of the population, total density and sexually mature density were significantly related to exploitation predictors for both species. In addition, densities of H. midae juveniles were significantly related to exploitation predictors, suggesting that recruitment may be suppressed at the most exploited sites. Exploitation of T. sarmaticus tended to be localized with refuge and subtidal populations persisting. H. midae exploitation was however, far more extensive and intense. Growth of H. midae was investigated using three methods; mark-recapture, cohort analysis and growth banding analysis at Kowie Rocks, Port Alfred. The most useful of these methods for determining growth was a new technique described for growth banding analysis; which was validated using cohort analysis and measurements of shells of known age. This technique was less time consuming and labour intensive than previously described methods. Abalone growth was best described by the Schnute (1981) growth function. Systematic geographic variation in growth was observed for 10 sites along the South African coastline. Significant differences in growth among sites existed for animals between 0-4 years (P < 0.0001) and 4-6 years (P < 0.0001), and in the mean maximum sizes attained (P < 0.001). In general, abalone from the south east/east coast were found to have faster growth rates, smaller mean maximum sizes and attained sexual maturity earlier than those along the south west/ west coast. Haliotis midae recruit and juvenile densities were found to differ significantly among sites of varying exploitation pressure (P < 0.0001) and among months for recruit densities (P < 0.001). Exploited sites had low recruit and juvenile densities compared to unexploited sites and peak recruitment occurred during October/ November 2005. Recruit densities were significantly related to infralittoral adult densities during two of the three sampling months (P<0.05), when recruitment was low. No relationship was observed during the period of high recruitment, with all sites receiving high recruit densities. It was concluded that variation in recruit densities was the result of a combination of both density-dependent relationships (i.e. local spawner density and temporal variability in recruitment intensity) and the possible dispersal capabilities of H. midae. In addition, it was concluded that at present recruitment overfishing was not occurring along the south east coast. Post-recruitment mortality rates were variable but relatively constant, with hypothetical percentage survival and density curves revealing high rates and similar mortality curves among sites. Variation in juvenile densities was consequently a result of initial recruit densities and not variation in post-recruitment mortality. T. sarmaticus populations were found to be regionally sustainable and persisted along the south east coast due to adjacent intertidal and subtidal refuge populations. However, H. midae populations are becoming decimated along the south east coast. From the information obtained in this study new management proposals were suggested and discussed, such as closed areas and region-based management fisheries together with stock enhancement. These suggestions may prove to be feasible alternatives to present management strategies.
- Full Text:
- Date Issued: 2007
The effect of temperature and photoperiod on the digestive physiology of the South African abalone Haliotis midae
- Authors: Dixon, Mark Geoffrey
- Date: 1992
- Subjects: Abalone culture , Gastropoda -- Physiology , Gastropoda -- Food , Abalones -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5276 , http://hdl.handle.net/10962/d1005120 , Abalone culture , Gastropoda -- Physiology , Gastropoda -- Food , Abalones -- South Africa
- Description: Inadequate information of the nutritive physiology and the dietary requirements of abalone are the principle factors that currently limit the development of a formulated feed for the commercial culture of Haliotis midae. The need to develop a method to determine apparent digestibility co-efficient's for abalone in order to facilitate further applied nutritional research was identified. Animals between 50 and 80 mm were collected from natural stocks along the east Cape coast of South Africa at Port Alfred and Great Fish point, and acclimated to laboratory conditions. Initial trials demonstrated that H. midae accepted and preferred a semi-purified diet to the seaweed Plocamium corallorhiza, one of the main components of it's natural diet. A technique of determining apparent digestibility co-efficient's (ADC) using the indirect method with chromic oxide as an inert marker was developed. Digestibility trials yielded higher dry matter (DMADC) and crude protein apparent digestibility co-efficient's (CPADC) for the semi-purified diet than for two species of algae, Gelidium amanzii and P. corallorhiza (83.7% and 95.6%, 70.7% and 80.0%, and 29.9% and 57.3% respectively). The ability of the animals to utilize terrestrial animal and plant ingredients efficiently makes it feasible to use conventional feed ingredients in formulated feeds for H. midae. Trials to determine the effect of different temperatures (15°C, 18°C and 22°C) on DMADC and CPADC of the semipurified diet showed that peak digestibility occurred at 18°C. There was also a positive relationship between temperature and consumption rate. Although no enzyme studies with H. midae have been conducted, the peak ADC's at 18°C is attributed to an increase in enzyme activity at this temperature. Transit time, an inverse function of temperature and consumption, is considered to be responsible for the decrease in the ADC' s at 22°C in conjunction with a possible decrease in enzyme activity at this temperature. A photoperiod trial to investigate the effect of darkness on DMADC and CPADC of the semi-purified diet revealed that digestive efficiency decreased with increasing hours of darkness. There was also a positive relationship between duration of darkness and the rate of consumption. The decrease in ADC's is attributed to decreased transit times as the duration of darkness increased . The contribution of this project to the understanding of abalone nutrition, the development of a formulated abalone feed and systems design for abalone farms is discussed.
- Full Text:
- Date Issued: 1992
- Authors: Dixon, Mark Geoffrey
- Date: 1992
- Subjects: Abalone culture , Gastropoda -- Physiology , Gastropoda -- Food , Abalones -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5276 , http://hdl.handle.net/10962/d1005120 , Abalone culture , Gastropoda -- Physiology , Gastropoda -- Food , Abalones -- South Africa
- Description: Inadequate information of the nutritive physiology and the dietary requirements of abalone are the principle factors that currently limit the development of a formulated feed for the commercial culture of Haliotis midae. The need to develop a method to determine apparent digestibility co-efficient's for abalone in order to facilitate further applied nutritional research was identified. Animals between 50 and 80 mm were collected from natural stocks along the east Cape coast of South Africa at Port Alfred and Great Fish point, and acclimated to laboratory conditions. Initial trials demonstrated that H. midae accepted and preferred a semi-purified diet to the seaweed Plocamium corallorhiza, one of the main components of it's natural diet. A technique of determining apparent digestibility co-efficient's (ADC) using the indirect method with chromic oxide as an inert marker was developed. Digestibility trials yielded higher dry matter (DMADC) and crude protein apparent digestibility co-efficient's (CPADC) for the semi-purified diet than for two species of algae, Gelidium amanzii and P. corallorhiza (83.7% and 95.6%, 70.7% and 80.0%, and 29.9% and 57.3% respectively). The ability of the animals to utilize terrestrial animal and plant ingredients efficiently makes it feasible to use conventional feed ingredients in formulated feeds for H. midae. Trials to determine the effect of different temperatures (15°C, 18°C and 22°C) on DMADC and CPADC of the semipurified diet showed that peak digestibility occurred at 18°C. There was also a positive relationship between temperature and consumption rate. Although no enzyme studies with H. midae have been conducted, the peak ADC's at 18°C is attributed to an increase in enzyme activity at this temperature. Transit time, an inverse function of temperature and consumption, is considered to be responsible for the decrease in the ADC' s at 22°C in conjunction with a possible decrease in enzyme activity at this temperature. A photoperiod trial to investigate the effect of darkness on DMADC and CPADC of the semi-purified diet revealed that digestive efficiency decreased with increasing hours of darkness. There was also a positive relationship between duration of darkness and the rate of consumption. The decrease in ADC's is attributed to decreased transit times as the duration of darkness increased . The contribution of this project to the understanding of abalone nutrition, the development of a formulated abalone feed and systems design for abalone farms is discussed.
- Full Text:
- Date Issued: 1992
- «
- ‹
- 1
- ›
- »