The water and nutrient potential of brewery effluent for hydroponic tomato production
- Authors: Power, Sean Duncan
- Date: 2014
- Subjects: Hydroponics , Tomatoes -- Breeding , Brewery waste , Water -- Purification , Algae culture , Algae -- Biotechnology , Nitric acid , Phosphoric acid
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5358 , http://hdl.handle.net/10962/d1011604 , Hydroponics , Tomatoes -- Breeding , Brewery waste , Water -- Purification , Algae culture , Algae -- Biotechnology , Nitric acid , Phosphoric acid
- Description: Brewery effluent that had undergone treatment in an anaerobic digester (AD) was used as an alternative water and nutrient source for hydroponic crop production. Brewery effluent was demonstrated to contain sufficient nutrients to support the growth, flowering and fruiting of Lycopersicum escolentum "Moneymaker" tomato crops. The adjustment of the effluent pH with phosphoric acid to between pH 6.0 and 6.5 increased the development of the crops by around 100% compared to crops grown in unaltered effluent. The pH adjusted effluent-grown plants grew to a mean height of 831.4 ± 21.1 mm and a dry biomass weight of 42.34 ± 2.76 g compared to the unaltered pH effluent plants which grew to a height of 410.6 ± 20.5 mm and a weight of 7.65 ± 0.68 g after 49 days. Effluent treatment in high-rate algal ponds (HRAP) was determined to have no positive effect on the nutritional potential of the effluent for Moneymaker production. The effluent-grown plants did not perform as well as plants grown in inorganic-fertilizer and municipal water. Plants grown in effluent grew taller but did not produce significantly more fruit when phosphoric acid (height: 1573.3 ± 50.4 mm, 19.4 ± 1.4 fruit per plant) was compared to nitric acid (height: 1254.1 ± 25.4 mm, 15.6 ± 1.5 fruit per plant) as the pH adjustment over 72 days. Direct and secondary plant stresses from effluent alkalinity, ammonium nutrition, nitrogen limitation, sodium concentrations and heat stress among other factors were probably confounding variables in these trials and require further investigation. Considering the raw effluent composition and manipulating the AD operation is a potential opportunity to improve overall AD performance, reduce chemical inputs in the effluent treatment process, reduce the final effluent alkalinity, and increase available nitrogen content in the final effluent. The anaerobic digester discharging >1000 m³ of nutrient enriched effluent every day is a resource with considerable potential. The benefits of developing this resource can contribute to cost-reduction at the brewery, more efficient water, nutrient and energy management at the brewery, and offer opportunities for job creation and potentially benefit local food security.
- Full Text:
- Date Issued: 2014
The treatment of brewery effluent using an integrated high rate algal ponding system
- Authors: Cilliers, Anneke
- Date: 2012
- Subjects: Water -- Purification -- South Africa , Algae -- Biotechnology , Algae culture , Algae -- Economic aspects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5331 , http://hdl.handle.net/10962/d1005177 , Water -- Purification -- South Africa , Algae -- Biotechnology , Algae culture , Algae -- Economic aspects
- Description: The application of high rate algal ponds (HRAP) in the treatment of brewery effluent that met the South African Department of Water Affairs and Forestry's (DWAF) general limits for discharge into a natural water resource of 1998 were tested during a lO-month baseline phase, followed by an 11-month optimization phase. The objective of the baseline phase was to monitor the seasonal performance of HRAPs. The hydraulic retention time (HRT) fluctuated between 11.16 d and 12.00 d in HRAPs. The chemical oxygen demand (COD) increased from 130.12 ± 6.94 mg/L (post-AD), to 171.21 ± 7.99 mg/L (post-HRAP) . The presence of algal cells and evaporation contributed towards an increase in post-HRAP COD. The ammonia (NH₄-N) concentration decreased from 46.59 ± 2.47 mg/L (post-AD), to 1.08 ± 0.12 mg/L (post-HRAP). The nitrite (NO₂- N) concentration remained below 1.00 mg/L in post-pilot plant AD, post-PFP and post-HRAP effluent. The phosphate (PO₄-P) concentration decreased from 29.81 ± 1.39 mg/L (post-AD) to 17.30 ± 1.16 mg/L PO₄-P. The objective of the optimization phase was to manipulate the HRT to achieve the maximum treatment rate that met the DWAF general limits for discharge into a natural water resource of 1998. Nitrogen (as NH₄-N, NO₃-N, NO₂-N) removal efficiency was used as an indicator of nutrient removal success. HRT was influenced by season. The optimal HRT for autumn was 4.30 d at a temperature of 20.53ºC in HRAP A2 (heated) and 18.96ºC in HRAP B2 (ambient). The optimal HRT for summer was 2.74 d at 29.90ºC in HRAP A2 (heated) and 26.36ºC in HRAP B2 (ambient). The COD decreased from 152.33 ± 4.85 mg/L (post-AD) to 95 .00 ± 3.75 mg/L (post-HRAP A2), and to 100.82 ± 5.93 mg/L (post-HRAP B2). The incoming NH₄-N concentration decreased from 42.53 ± 1.38 mg/ L (post-AD), to 1.70 ± 0.81 mg/ L (post-HRAP) . The nitrate (NO₃-N) concentration post-HRAP was 12 - 14 mg/L. The main methods for NH₄-N removal were probably NH₄-N volatilization through algal uptake. HRAPs were able to lower nitrogen and phosphorous concentrations to within the DWAF limits under normal operating conditions. It is recommended that HRAP treated brewery wastewater be used for irrigation after salt removal, or alternatively, for groundwater recharge . Regulatory exemptions would be required for higher than permitted COD and EC concentrations to enable these actions.
- Full Text:
- Date Issued: 2012
Analysis of the anti-cancer activity of novel indigenous algal compounds in breast cancer: towards the development of a model for screening anti-cancer stem cell activity
- Authors: Lawson, Jessica Clair
- Date: 2010
- Subjects: Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3925 , http://hdl.handle.net/10962/d1003984 , Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Description: Breast cancer, the most common malignancy diagnosed in women, is one of the leading causes of death in women worldwide. In South Africa only 32% of women diagnosed with advanced breast cancer survive more than five years. The search for new chemotherapeutic agents capable of effectively treating breast cancer is therefore essential. Recent evidence supporting the cancer stem cell theory of cancer development for breast cancer challenges the current theories of cancer development and hence treatment. Cancer stem cells are a small subpopulation of tumour cells that possess properties of both cancer cells and stem cells and are believed to be the tumour-initiating population of many cancers. Cancer stem cells are inherently resistant to many chemotherapeutic agents and in this way have been associated with repopulation of tumours after chemotherapy. This phenomenon is proposed as a possible mechanism for cancer relapse after treatment. Cancer stem cells have also been implicated in metastasis, the major cause of mortality in cancer patients. Therefore, any treatment that is capable of targeting and removing breast cancer stem cells may have the theoretical potential to effectively treat breast cancer. However, there are currently no such treatments available for clinical use. We were provided access to a library of novel indigenous small molecules isolated from red and brown algae found off the Eastern Cape of South Africa. The aim of this project was to analyse the anti-cancer and anti-cancer stem cell properties of the compounds in this library and to identify „hit‟ compounds which could form the basis for future development into new anti-cancer drugs. Ten novel compounds of algal origin were tested for cytotoxicity, by determining their ability to inhibit the growth of MCF12A breast epithelial cells and MCF7 breast cancer cells using the colorimetric MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell proliferation assay. All but one of the compounds tested exhibited cytotoxicity towards the MCF7 cancer cell line, with IC50 values (the concentration of the compound that leads to a 50% inhibition in cell growth) of between 3 μM and 90 μM. The chemotherapeutic drug paclitaxel was used as a positive control. Four of the compounds (RUMB-001, RUMB-002, RUMB-007 and RUMB-010/saragaquinoic acid) were significantly more toxic to the MCF7 cancer cell line, than the „normal‟ MCF12A breast cells and were selected as priority compounds for further analyses. In addition, two other compounds were selected as priority compounds, one highly cytotoxic towards both MCF12A and MCF7 cell lines (RUMB-015) and one which was non toxic to either cell line (RUMB-017/018). Preliminary studies into the mechanism of cytotoxicity using Western blot analysis for poly (ADP-ribose) polymerase (PARP) cleavage and Hoechst 33342 immunostaining in MCF-7 cells were largely unsuccessful. The Hoechst 33342 immunostaining assay did provide tentative evidence that selected priority compounds were capable of inducing apoptosis, although these assays will need to be repeated using a less subjective assay to confirm the results. The priority compounds were subsequently investigated for their cytotoxic effect on the cancer stem cell-enriched side population in MCF7 cells. The ability of the priority compounds to selectively target the cancer stem cell containing side population was assessed using two complementary flow cytometry-based techniques – namely the Hoechst 33342-exclusion assay, and fluorescent immunostaining for the expression of the putative cancer stem cell marker, ABCG2+. The ABCG2+ staining assay was a novel technique developed during the course of this study. It remains to be fully validated, but it may provide a new and reliable way to identify and analyse cancer stem cell containing side population cells. The MCF7 cells were treated with the compounds and the proportion of putative cancer stem cells compared with the size of the population in untreated cells was assessed. Three compounds (RUMB-010, RUMB-015 and RUMB-017/018) capable of reducing the proportion of side population cells within the MCF7 cell line were identified. Taking these data together, we identified two potential „hit‟ compounds which should be prioritised for future research. These are compounds RUMB-010/sargaquinoic acid and RUMB-017/018. RUMB-010 is of interest as it was shown to target the putative cancer stem cell population, in addition to the bulk MCF7 tumour line, but was relatively less toxic to the „normal‟ MCF12A cell line. RUMB-017/018 is of interest due to the ability to selectively target the cancer stem cell enriched side population, while having little effect on the normal (MCF12A) or bulk tumour (MCF7) cell lines tested. These compounds will be important as „hit‟ compounds for drug development and as tool compounds to study cancer and cancer stem cell biology.
- Full Text:
- Date Issued: 2010
The removal of toxic heavy metals from aqueous solutions by algal extracellular polysaccharides
- Authors: Selepe, Mamaropeng Marcus
- Date: 1999
- Subjects: Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3994 , http://hdl.handle.net/10962/d1004054 , Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Description: This study investigated the possible use of algal extracellular polysaccharide as a biosorbent for removal of heavy metals (copper and lead) from aqueous solutions as a means of bioremediation for metal containing effluents. This biopolymer has good biosorbent properties and a potential to provide a cost effective, selective and efficient purification system. A variety of environmental conditions induce the production of extracellular polysaccharides in algae. The production of exopolysaccharides by Dunaliella cultures was induced by nitrogen deficient conditions. A high ratio of carbon to nitrogen source considerably enhanced the polysaccharide release. Purified extracellular polysaccharide samples exhibited a monosaccharide composition consisting of the following sugars: xylose, arabinose, 2-0-methyl mannose, mannose, glucose and galactose. The relative abundance (%) of these sugars were calculated relative to xylose. The major sugar constituent was 2-0-methyl mannose, which was present at approximately 160% relative to xylose. The percentage relative abundance of other sugars was as follows: 18.8; 86.8; 85.3 and 22.3% for arabinose; mannose; glucose and galactose respectively. The identity of the various constituents were confirmed by mass spectrometry. The ability of Dunaliella exopolysaccharides to accumulate metals was investigated. The following parameters were studied because they affect metal uptake: solution pH, biomass concentration, temperature, time and metal concentration. The uptake of both copper and lead were pH dependent. However, metal uptake was not significantly affected by temperature. Kinetic studies showed that Dunaliella extracellular polysaccharides exhibit good bioremediation properties. Metal uptake was rapid. In addition, the exopolysaccharide has good metal binding capacity with an uptake capacity for lead of 80 mg/g from a solution containing initial lead concentration of approximately 40 mg/l. Competition studies revealed that the presence of a second metal in solution inhibits uptake of the other metal compared to uptake in single metal solution of that particular metal. The presence of lead inhibited the uptake of copper from approximately 65% in single metal solution to 10% in binary metal solution. The presence of copper also inhibited lead uptake, though not to the same extent. Higher concentrations of lead could not completely prevent removal of copper from solution and visa versa. The same was true for lead which could not be displaced by a four-fold concentration of copper. Instead, a certain percentage of copper was always removed showing that lead did not compete with copper for these binding sites. In conclusion it appears that, copper and lead bind to different sites on Dunaliella exopolysaccharides and that they exhibit selective or preferential removal of lead.
- Full Text:
- Date Issued: 1999
The biotechnology of effluent-grown Spirulina, and application in aquaculture nutrition
- Authors: Maart, Brenton Ashley
- Date: 1993
- Subjects: Aquaculture , Spirulina , Algae -- Biotechnology , Fishes -- Feeding and feeds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4050 , http://hdl.handle.net/10962/d1004111 , Aquaculture , Spirulina , Algae -- Biotechnology , Fishes -- Feeding and feeds
- Description: The biotechnology of production and utilisation of the cyanobacterium Spirulina has been well documented. Research has centred mainly on application in human and animal nutrition, and has been motivated by the high protein, vitamin, fatty acid and growth factor contents. The main obstacle in realising the full potential of this feed source has been the high production costs associated with its mass culture in defined media. The observation of blooms of Spirulina in tannery effluent evaporation ponds in Wellington, South Africa, prompted this investigation into the harvesting, and nutritional and toxicological evaluation of this potentially low-cost production system, with the ultimate aim of using the product in aquaculture rations. An investigation of the chemical gradient along the evaporation cascade showed a positive correlation between the prevailing chemical conditions and the dominant species populations. A standing crop of 9.5 tonnes/ha of Spirulina was found to be present in the latter alkaline ponds, characterised by relatively lower organic and sulphur contents. Initial harvesting of the biomass was achieved by the design, construction and implementation of a small-scale screen harvest, which yielded a 25 kg (dry weight) crop. A scale-up model was then designed, and implemented in a technical scale harvest, yielding a crop of 250 kg (dry weight). Both these harvests utilised the bloom of surface-autoflocculated biomass. Concentrated cell slurries were sun-dried on muslin beds, and milled to a coarse powder. An evaluation of the harvest revealed a chemical content similar to other published reports of defined media cultures, with the exception of the protein and amino acid contents. The observed lower levels of the latter two are almost certainly due to the sun-drying method employed, known to reduce the protein content due to thermal denaturation. Legislation demands the strict toxicological evaluation of new protein sources, and because of the effluent-nature of the growth medium of this source of Spirulina, its viability lies only in the application as an animal feed or supplement. A range of toxicological tests were chosen that were targeted to elucidate the possible toxicological constraints of this effluentgrown source of protein in animal nutrition. The nucleic acid and pesticide contents of the harvested biomass were within the prescribed safety ranges. Atomic absorption showed minimal accumulation of minerals and heavy metals from the effluent. A bioassay with the brine shrimp Anemia salina showed that the biomass contained no toxicologically active water-soluble components. A short term feeding trial with new-born chicks showed that supplementation with Spirulina had no effect on the growth rates and feed conversion ratios of the different feeding groups. Pathological analyses showed that the liver was the only target organ to elicit a change in response to supplementation of the diets with Spirulina. A general decrease in liver weight was noted, with Cu, Ca, Fe and Zn being significantly accumulated. A histopathological examination however, showed no cellular and functional aberration from the control animals. The toxicological analyses gave the preliminary safe go-ahead for the evaluation of effluent-grown Spirulina in aquaculture nutrition. The South African abalone Haliotis midae, and the rainbow trout Oncorhynchus mykiss were chosen as representative species of edible cultured organisms. The technology for the culture of the perlemoen abalone is being established in South Africa, with the main area of research being the development of an artificial diet for high density culture. A 40 day growth trial demonstrated that lower concentrations of Spirulina supplemented to an agar-based fishmeal diet resulted in growth rates and feed conversion ratios similar to the control fishmeal and purified-casein diets, and thus has application potential in the nutrition of this high-cost marine delicacy. The aquaculture technology of freshwater rainbow trout is already well established. An eight week feeding trial with various concentrations of Spirulina showed that this effluent-grown protein source can partially replace fishmeal in semi-purified diets. Fish fed Spirulina did not exhibit decisive manifestations of toxicity, as determined in a histopathological study. In addition, Spirulina supplementation resulted in enhanced colouration of the skin and flesh, which may have implications in the aesthetic marketing of this sought-after table fish. The primary aim of this preliminary investigation thus concerned the determination of the biotechnological potential of this effluent-source of Spirulina. A technology transfer from the economically unfeasible defined-media culture was implemented. This project is ultimately aimed as a contribution towards the treatment of tannery wastewater, by the removal of contaminants from the effluent in the form of organic biomass.
- Full Text:
- Date Issued: 1993