The water and nutrient potential of brewery effluent for hydroponic tomato production
- Authors: Power, Sean Duncan
- Date: 2014
- Subjects: Hydroponics , Tomatoes -- Breeding , Brewery waste , Water -- Purification , Algae culture , Algae -- Biotechnology , Nitric acid , Phosphoric acid
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5358 , http://hdl.handle.net/10962/d1011604 , Hydroponics , Tomatoes -- Breeding , Brewery waste , Water -- Purification , Algae culture , Algae -- Biotechnology , Nitric acid , Phosphoric acid
- Description: Brewery effluent that had undergone treatment in an anaerobic digester (AD) was used as an alternative water and nutrient source for hydroponic crop production. Brewery effluent was demonstrated to contain sufficient nutrients to support the growth, flowering and fruiting of Lycopersicum escolentum "Moneymaker" tomato crops. The adjustment of the effluent pH with phosphoric acid to between pH 6.0 and 6.5 increased the development of the crops by around 100% compared to crops grown in unaltered effluent. The pH adjusted effluent-grown plants grew to a mean height of 831.4 ± 21.1 mm and a dry biomass weight of 42.34 ± 2.76 g compared to the unaltered pH effluent plants which grew to a height of 410.6 ± 20.5 mm and a weight of 7.65 ± 0.68 g after 49 days. Effluent treatment in high-rate algal ponds (HRAP) was determined to have no positive effect on the nutritional potential of the effluent for Moneymaker production. The effluent-grown plants did not perform as well as plants grown in inorganic-fertilizer and municipal water. Plants grown in effluent grew taller but did not produce significantly more fruit when phosphoric acid (height: 1573.3 ± 50.4 mm, 19.4 ± 1.4 fruit per plant) was compared to nitric acid (height: 1254.1 ± 25.4 mm, 15.6 ± 1.5 fruit per plant) as the pH adjustment over 72 days. Direct and secondary plant stresses from effluent alkalinity, ammonium nutrition, nitrogen limitation, sodium concentrations and heat stress among other factors were probably confounding variables in these trials and require further investigation. Considering the raw effluent composition and manipulating the AD operation is a potential opportunity to improve overall AD performance, reduce chemical inputs in the effluent treatment process, reduce the final effluent alkalinity, and increase available nitrogen content in the final effluent. The anaerobic digester discharging >1000 m³ of nutrient enriched effluent every day is a resource with considerable potential. The benefits of developing this resource can contribute to cost-reduction at the brewery, more efficient water, nutrient and energy management at the brewery, and offer opportunities for job creation and potentially benefit local food security.
- Full Text:
- Date Issued: 2014
The treatment of brewery effluent using an integrated high rate algal ponding system
- Authors: Cilliers, Anneke
- Date: 2012
- Subjects: Water -- Purification -- South Africa , Algae -- Biotechnology , Algae culture , Algae -- Economic aspects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5331 , http://hdl.handle.net/10962/d1005177 , Water -- Purification -- South Africa , Algae -- Biotechnology , Algae culture , Algae -- Economic aspects
- Description: The application of high rate algal ponds (HRAP) in the treatment of brewery effluent that met the South African Department of Water Affairs and Forestry's (DWAF) general limits for discharge into a natural water resource of 1998 were tested during a lO-month baseline phase, followed by an 11-month optimization phase. The objective of the baseline phase was to monitor the seasonal performance of HRAPs. The hydraulic retention time (HRT) fluctuated between 11.16 d and 12.00 d in HRAPs. The chemical oxygen demand (COD) increased from 130.12 ± 6.94 mg/L (post-AD), to 171.21 ± 7.99 mg/L (post-HRAP) . The presence of algal cells and evaporation contributed towards an increase in post-HRAP COD. The ammonia (NH₄-N) concentration decreased from 46.59 ± 2.47 mg/L (post-AD), to 1.08 ± 0.12 mg/L (post-HRAP). The nitrite (NO₂- N) concentration remained below 1.00 mg/L in post-pilot plant AD, post-PFP and post-HRAP effluent. The phosphate (PO₄-P) concentration decreased from 29.81 ± 1.39 mg/L (post-AD) to 17.30 ± 1.16 mg/L PO₄-P. The objective of the optimization phase was to manipulate the HRT to achieve the maximum treatment rate that met the DWAF general limits for discharge into a natural water resource of 1998. Nitrogen (as NH₄-N, NO₃-N, NO₂-N) removal efficiency was used as an indicator of nutrient removal success. HRT was influenced by season. The optimal HRT for autumn was 4.30 d at a temperature of 20.53ºC in HRAP A2 (heated) and 18.96ºC in HRAP B2 (ambient). The optimal HRT for summer was 2.74 d at 29.90ºC in HRAP A2 (heated) and 26.36ºC in HRAP B2 (ambient). The COD decreased from 152.33 ± 4.85 mg/L (post-AD) to 95 .00 ± 3.75 mg/L (post-HRAP A2), and to 100.82 ± 5.93 mg/L (post-HRAP B2). The incoming NH₄-N concentration decreased from 42.53 ± 1.38 mg/ L (post-AD), to 1.70 ± 0.81 mg/ L (post-HRAP) . The nitrate (NO₃-N) concentration post-HRAP was 12 - 14 mg/L. The main methods for NH₄-N removal were probably NH₄-N volatilization through algal uptake. HRAPs were able to lower nitrogen and phosphorous concentrations to within the DWAF limits under normal operating conditions. It is recommended that HRAP treated brewery wastewater be used for irrigation after salt removal, or alternatively, for groundwater recharge . Regulatory exemptions would be required for higher than permitted COD and EC concentrations to enable these actions.
- Full Text:
- Date Issued: 2012
Co-utilisation of microalgae for wastewater treatment and the production of animal feed supplements
- Authors: Johnson, Hailey E
- Date: 2011
- Subjects: Microalgae -- Biotechnology , Algae culture , Algae products , Waste products as feed , Sewage -- Purification , Organic wastes -- Recycling , Food industry and trade -- Waste disposal , Agriculture -- Waste disposal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3940 , http://hdl.handle.net/10962/d1003999 , Microalgae -- Biotechnology , Algae culture , Algae products , Waste products as feed , Sewage -- Purification , Organic wastes -- Recycling , Food industry and trade -- Waste disposal , Agriculture -- Waste disposal
- Description: Microalgae have a variety of commercial applications, the oldest of which include utilisation as a food source and for use in wastewater treatment. These applications, however, are seldom combined due to toxicity concerns, for ethical reasons, and generally the requirement for cultivation of a single algae species for use as a feed supplement. These problems might be negated if a “safer” wastewater such as that from agricultural and/or commercial food production facilities were to be utilised and if a stable algae population can be maintained. In this investigation preliminary studies were carried out using an Integrated Algae Pond System (IAPS) for domestic wastewater treatment to determine the species composition in the associated High Rate Algae Ponds (HRAPs). The effect of different modes of operation, continuous versus batch, on nutrient removal, productivity and species composition was also investigated. Furthermore, indigenous species in the HRAP were isolated and molecularly identified as, Chlorella, Micractinium, Scenedesmus and Pediastrum. Additionally, the effect of the nor amino acid, 2-hydroxy-4-(methylthio)-butanoic acid (HMTBA) and its Cu-chelated derivative, on the growth and biochemical composition of Chlorella, Micractinium, Scenedesmus, Pediastrum and Spirulina was investigated. Species composition in the HRAP was stable under continuous operation with Micractinium dominating > 90% of the algae population. Under batch operation the population dynamic shifted; Chlorella outcompeted Micractinium possibly due to nutrient depletion and selective grazing pressures caused by proliferation of Daphnia. Higher species diversity was observed during batch mode as slower growing algae were able to establish in the HRAP. Nutrient removal efficiency and biomass productivity was higher in continuous mode, however lower nutrient levels were obtained in batch operation. HMTBA did not significantly affect growth rate, however treatment with 10 mg.L-1 resulted in slightly increased growth rate in Micractinium and increased final biomass concentrations in Chlorella, Micractinium and Spirulina (although this was not statistically significant for Micractinium and Spirulina), which are known mixotrophic species. Algae treated with Cu-HMTBA, showed reduced final biomass concentration with 10 mg.L-1, caused by Cu toxicity. Biochemical composition of the algae was species-specific and differed through the growth cycle, with high protein observed during early growth and high carbohydrate during late growth/early stationary phase. Additionally, 0.1 mg.L-1 HMTBA and Cu-HMTBA significantly reduced protein content in Chlorella, Micractinium, Scenedesmus and Pediastrum. In conclusion, operation of the HRAP in continuous culture provided suitable wastewater treatment with high productivity of an ideal species, Micractinium, for use in animal feed supplementation. This species had 40% protein content during growth (higher than the other species tested) and dominated the HRAP at > 90% of the algae population during continuous mode. Addition of HMTBA (> 1 mg.L-1) to algae cultivation systems and those treating wastewater, has the potential to improve productivity and the value of the biomass by enhancing protein content. Overall, the co-utilisation of microalgae for wastewater treatment and the generation of a biomass rich in protein, for incorporation into formulated animal feed supplements, represents a closed ecosystem which conserves nutrients and regenerates a most valuable resource, water.
- Full Text:
- Date Issued: 2011
Towards a sustainable bioprocess for the remediation of acid mine drainage
- Authors: Mambo, Mutsa Prudence
- Date: 2011
- Subjects: Acid mine drainage , Algae culture , Reduction (Chemistry) , Hydrolysis , ASPAM model (Acid mine drainage) , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5955 , http://hdl.handle.net/10962/d1006167 , Acid mine drainage , Algae culture , Reduction (Chemistry) , Hydrolysis , ASPAM model (Acid mine drainage) , Water -- Purification
- Description: Acid mine drainage is of growing concern for both developing and developed economies. Thus there is increasing pressure to develop alternative remediation strategies. Biological sulphidogenic mechanisms have long since been studied but, very few have been implemented on a large scale. Limitations are due to the inability to acquire a suitable, low cost, environmentally friendly, renewable carbon source. The present study investigated the use of an algae biomass generated by the HRAOP of an IAPS as a carbon source for the EBRU 00AB/06 SRB consortium. The algae biomass and consortium were utilized together to remediate simulated AMD. Remediation involved decreasing the sulphate and metal concentrations in solution and decreasing the acidity of a simulated AMD. Experiments were carried out to investigate the capability of the EBRU 00AB/06 SRB consortium for sulphate reduction and sulphide generation. The consortium produced colonies when grown under anaerobic conditions in Petri dishes containing modified lactate SRB medium. The SRB consortium reduced the sulphate concentration of modified Postgates medium B and generated sulphide. Further analysis of the EBRU 00AB/06 SRB consortium revealed that the consortium was minimally impacted at pH 5 and by sulphate and iron at 3 g.L-1 and 0.5 g.L-1 respectively. The EBRU 00AB/06 SRB consortium was exposed to Actinomycin D and Ethidium Bromide to determine whether transcription and translation of proteins was required for sulphate reduction. Results indicated that sulphide generation and sulphate reduction were inducible. Analysis of the algae biomass used in this study revealed the empirical formula C1.0H1.91N0.084S0.003O0.36 indicating a carbon source rich in the nutrients required to sustain microbial development. Light microscopy revealed that algae cell walls and in particular those of Pediastrum were susceptible to acid hydrolysis. Dinitrosalicylic acid, Nile red, Bradford and Ninhydrin assays were used to determine the reducing sugar, lipid, protein and amino acid content respectively, of the mixed algae biomass. Results showed that upon exposure of the biomass to simulated AMD at pH 1 and pH 3, the concentration of reducing sugars and amino acids in solution increased. Whereas levels of lipids remained unchanged while the protein concentration decreased, indicating that, upon exposure of algae biomass to AMD, simulated or otherwise, cells ruptured, proteins were hydrolyzed and polysaccharides were broken down to sugars which are immediately available for SRB utilization. Exposure of biomass to simulated AMD revealed further that the presence of algae biomass increased the pH of simulated AMD (pH 3) to pH 7.67 after 4 d. Likewise, the pH of simulated AMD at 1 increased to 1.77 after 2 d while pH of the neutral control increased to 8.1 after 4 d. A direct comparison between lactate and algae biomass revealed 94 % sulphate removal after 23 d in the presence of algae biomass while 82 % sulphate removal was measured in the presence of lactate. Thus the EBRU 00AB/06 SRB consortium successfully utilized algae biomass for sulphate reduction and sulphide generation. In another experiment to establish if the consortium could remediate simulated AMD (pH 5) containing 0.5 g.L-1 iron and 3 g.L-1 sulphate while utilizing an algae biomass as the carbon source no residual iron was detected after 14 d and by day 23, an 89.07 % reduction in sulphate was measured. The results of this investigation are discussed in terms of utilizing a readily available and renewable biomass in the form of microalgae produced in HRAOPs as an effective carbon source in the SRB catalysed remediation of AMD.
- Full Text:
- Date Issued: 2011