An investigation into the neuroprotective effects of estrogen and progesterone in a model of homocysteine-induced neurodegeration
- Authors: Wu, Wing Man
- Date: 2006
- Subjects: Homocysteine , Estrogen , Estrogen -- Therapeutic use , Progesterone , Hormone receptors , Methyl aspartate , Oxidative stress , Alzheimer's disease -- Treatment , Nervous system -- Degeneration -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3806 , http://hdl.handle.net/10962/d1003284 , Homocysteine , Estrogen , Estrogen -- Therapeutic use , Progesterone , Hormone receptors , Methyl aspartate , Oxidative stress , Alzheimer's disease -- Treatment , Nervous system -- Degeneration -- Prevention
- Description: Homocysteine (Hcy) is a sulfur containing amino acid and is a potent neurotoxin. It has been shown that elevated levels of Hcy, termed hyperhomocysteinemia, plays a role in the pathologies of Alzheimer’s disease (AD) and age-related cognitive decline. Hcy is a glutamate agonist, which causes in increase in Ca[superscript (2+)] influx via the activation of NMDA class of excitatory amino acid receptors, which results in neuronal cell death and apoptosis. Estrogen and progesterone are female hormones that are responsible for reproduction and maternal behaviour. However, in the last decade, it is evident that both female hormones have neuroprotective properties in many animal models of neurodegeneration. Collectively, both estrogen and progesterone reduce the consequences of the oxidative stress by enhancing the antioxidant defence mechanisms, reducing excitotoxicity by altering glutamate receptor activity and reducing the damage caused by lipid peroxidation. However, the mechanisms by which estrogen and progesterone provide such neuroprotection probably depend on the type and concentration of hormone present. Moreover, numerous studies have shown that hormone replacement therapy (HRT, estrogen and progestins) or estrogen-only replacement therapy (ERT) may prevent or delay the onset of AD and improve cognition for women with AD. Clinical trials have also shown that women taking HRT may modify the effects of Hcy levels on cognitive functioning. Oxidative stress increases in the aging brain and thus has a powerful effect on enhanced susceptibility to neurodegenerative disease. The detection and measurement of lipid peroxidation and superoxide anion radicals in the brain tissue supports the involvement of free radical reactions in neurotoxicity and in neurodegenerative disorders. The hippocampus is an important region of the brain responsible for the formation of memory. However, agents that induce stress in this area have harmful effects and could lead to dementia. This study aims to investigate and clarify the neuroprotective effects of estrogen and progesterone, using Hcy-induced neurodegenerative models. The initial studies demonstrate that estrogen and progesterone have the ability to scavenge potent free radicals. Histological studies undertaken reveal that both estrogen and progesterone protect against Hcy-induced neuronal cell death. In addition, immunohistochemical investigations show that Hcy-induced apoptosis in the hippocampus can be inhibited by both estrogen and progesterone. However, estrogen also acts at the NMDA receptor as an agonist, while progesterone blocks at the NMDA receptor. These mechanisms reduce the ability of Hcy to cause damage to neurons, since Hcy-induced neurotoxicity is dependent on the overstimulation of the NMDA receptor. SOD and GPx are important enzymatic antioxidants which can react with ROS and neutralize them before these inflict damage in the brain. Hcy can increase oxidative stress by inhibiting expression and function of these antioxidants. However, it has been shown that the antioxidant abilities of both estrogen and progesterone can up-regulate the activities of SOD and GPx. These results provide further evidence that estrogen and progesterone act as antioxidants and are free radical scavengers. The discovery of neuroprotective agents is becoming important as accumulating evidence indicates the protective role of both estrogen and progesterone in Hcy-induced neurodegeneration. Thus further work in clinical trials is needed to examine whether reducing Hcy levels with HRT can become the treatment of neurodegenerative disorders, such as Alzheimer’s disease.
- Full Text:
- Date Issued: 2006
- Authors: Wu, Wing Man
- Date: 2006
- Subjects: Homocysteine , Estrogen , Estrogen -- Therapeutic use , Progesterone , Hormone receptors , Methyl aspartate , Oxidative stress , Alzheimer's disease -- Treatment , Nervous system -- Degeneration -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3806 , http://hdl.handle.net/10962/d1003284 , Homocysteine , Estrogen , Estrogen -- Therapeutic use , Progesterone , Hormone receptors , Methyl aspartate , Oxidative stress , Alzheimer's disease -- Treatment , Nervous system -- Degeneration -- Prevention
- Description: Homocysteine (Hcy) is a sulfur containing amino acid and is a potent neurotoxin. It has been shown that elevated levels of Hcy, termed hyperhomocysteinemia, plays a role in the pathologies of Alzheimer’s disease (AD) and age-related cognitive decline. Hcy is a glutamate agonist, which causes in increase in Ca[superscript (2+)] influx via the activation of NMDA class of excitatory amino acid receptors, which results in neuronal cell death and apoptosis. Estrogen and progesterone are female hormones that are responsible for reproduction and maternal behaviour. However, in the last decade, it is evident that both female hormones have neuroprotective properties in many animal models of neurodegeneration. Collectively, both estrogen and progesterone reduce the consequences of the oxidative stress by enhancing the antioxidant defence mechanisms, reducing excitotoxicity by altering glutamate receptor activity and reducing the damage caused by lipid peroxidation. However, the mechanisms by which estrogen and progesterone provide such neuroprotection probably depend on the type and concentration of hormone present. Moreover, numerous studies have shown that hormone replacement therapy (HRT, estrogen and progestins) or estrogen-only replacement therapy (ERT) may prevent or delay the onset of AD and improve cognition for women with AD. Clinical trials have also shown that women taking HRT may modify the effects of Hcy levels on cognitive functioning. Oxidative stress increases in the aging brain and thus has a powerful effect on enhanced susceptibility to neurodegenerative disease. The detection and measurement of lipid peroxidation and superoxide anion radicals in the brain tissue supports the involvement of free radical reactions in neurotoxicity and in neurodegenerative disorders. The hippocampus is an important region of the brain responsible for the formation of memory. However, agents that induce stress in this area have harmful effects and could lead to dementia. This study aims to investigate and clarify the neuroprotective effects of estrogen and progesterone, using Hcy-induced neurodegenerative models. The initial studies demonstrate that estrogen and progesterone have the ability to scavenge potent free radicals. Histological studies undertaken reveal that both estrogen and progesterone protect against Hcy-induced neuronal cell death. In addition, immunohistochemical investigations show that Hcy-induced apoptosis in the hippocampus can be inhibited by both estrogen and progesterone. However, estrogen also acts at the NMDA receptor as an agonist, while progesterone blocks at the NMDA receptor. These mechanisms reduce the ability of Hcy to cause damage to neurons, since Hcy-induced neurotoxicity is dependent on the overstimulation of the NMDA receptor. SOD and GPx are important enzymatic antioxidants which can react with ROS and neutralize them before these inflict damage in the brain. Hcy can increase oxidative stress by inhibiting expression and function of these antioxidants. However, it has been shown that the antioxidant abilities of both estrogen and progesterone can up-regulate the activities of SOD and GPx. These results provide further evidence that estrogen and progesterone act as antioxidants and are free radical scavengers. The discovery of neuroprotective agents is becoming important as accumulating evidence indicates the protective role of both estrogen and progesterone in Hcy-induced neurodegeneration. Thus further work in clinical trials is needed to examine whether reducing Hcy levels with HRT can become the treatment of neurodegenerative disorders, such as Alzheimer’s disease.
- Full Text:
- Date Issued: 2006
An investigation into the possible neuroprotective or neurotoxic properties of metrifonate
- Authors: Ramsunder, Adrusha
- Date: 2005 , 2013-06-11
- Subjects: Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3833 , http://hdl.handle.net/10962/d1007560 , Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Description: Alzheimer's disease is a progressive neurodegenerative disorder, in which there is a marked decline in neurotransmitters, especially those of the cholinergic pathways. One of the approaches to the symptomatic treatment of Alzheimer's disease is the inhibition of the breakdown of the neurotransmitter acetylcholine, using an acetylcholinesterase inhibitor. One such drug tested, is the organophosphate, metrifonate. Any drug used for the treatment of neurodegenerative disorders should preferably not induce further neurological damage. Thus, in the present study, we investigated whether or not metrifonate is neuroprotective. The in vivo and in vitro effect of this drug on free radicals generation shows that metrifonate increases the level ofthese reactive species. Lipid peroxidation induced using quinolinic acid (QA) and iron (II) and show that metrifonate increased the peroxidative damage induced by using quinolinic acid. Metrifonate is also able to induce lipid peroxidation both in vivo and in vitro. This was reduced in vitro in the presence of melatonin. Using iron (II), in vi/ro, there was no significant difference in the level of lipid peroxidation in the presence of this drug. An investigation of the activity of the mitochondrial electron transport chain and complex I of the electron transport chain in the presence of metrifonate revealed that metrifonate reduces the activity of the electron transport chain at the level of complex I. The activity of the mitochondrial electron transport chain was restored in the presence of melatonin. Pineal organ culture showed that metrifonate does not increase melatonin production. Histological and apoptosis studies show that tissue necrosis and apoptosis respectively, occur in the presence of this agent, which is reduced in the presence of melatonin. Metal binding studies were performed USing ultraviolet spectroscopy, and electrochemical analysis to examine the interaction of metrifonate with iron (II) and iron (III). No shift in the peak was observed in the ultraviolet spectrum when iron (ll) was added to metrifonate. Electrochemical studies show that there may be a very weak or no ligand formed between the metal and drug. This study shows that while drugs such as metrifonate may be beneficial in restoring cognitive function in Alzheimer's disease, it could also have the potential to enhance neurodegeneration, thus worsening the condition, in the long term. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
- Authors: Ramsunder, Adrusha
- Date: 2005 , 2013-06-11
- Subjects: Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3833 , http://hdl.handle.net/10962/d1007560 , Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Description: Alzheimer's disease is a progressive neurodegenerative disorder, in which there is a marked decline in neurotransmitters, especially those of the cholinergic pathways. One of the approaches to the symptomatic treatment of Alzheimer's disease is the inhibition of the breakdown of the neurotransmitter acetylcholine, using an acetylcholinesterase inhibitor. One such drug tested, is the organophosphate, metrifonate. Any drug used for the treatment of neurodegenerative disorders should preferably not induce further neurological damage. Thus, in the present study, we investigated whether or not metrifonate is neuroprotective. The in vivo and in vitro effect of this drug on free radicals generation shows that metrifonate increases the level ofthese reactive species. Lipid peroxidation induced using quinolinic acid (QA) and iron (II) and show that metrifonate increased the peroxidative damage induced by using quinolinic acid. Metrifonate is also able to induce lipid peroxidation both in vivo and in vitro. This was reduced in vitro in the presence of melatonin. Using iron (II), in vi/ro, there was no significant difference in the level of lipid peroxidation in the presence of this drug. An investigation of the activity of the mitochondrial electron transport chain and complex I of the electron transport chain in the presence of metrifonate revealed that metrifonate reduces the activity of the electron transport chain at the level of complex I. The activity of the mitochondrial electron transport chain was restored in the presence of melatonin. Pineal organ culture showed that metrifonate does not increase melatonin production. Histological and apoptosis studies show that tissue necrosis and apoptosis respectively, occur in the presence of this agent, which is reduced in the presence of melatonin. Metal binding studies were performed USing ultraviolet spectroscopy, and electrochemical analysis to examine the interaction of metrifonate with iron (II) and iron (III). No shift in the peak was observed in the ultraviolet spectrum when iron (ll) was added to metrifonate. Electrochemical studies show that there may be a very weak or no ligand formed between the metal and drug. This study shows that while drugs such as metrifonate may be beneficial in restoring cognitive function in Alzheimer's disease, it could also have the potential to enhance neurodegeneration, thus worsening the condition, in the long term. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
Cimetidine as a free radical scavenger
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- Date Issued: 2003
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »