Synthesis of bromochloromethane using phase transfer catalysis
- Authors: Brooks, Lancelot L
- Date: 2011
- Subjects: Chemistry, Analytic , Fire extinguishing agents , Chemical systems , Physical science
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10382 , http://hdl.handle.net/10948/d1008162 , Chemistry, Analytic , Fire extinguishing agents , Chemical systems , Physical science
- Description: The synthesis of bromochloromethane (BCM) in a batch reactor, using phase transfer catalysis, was investigated. During the synthetic procedure, sodium bromide (100.0g, 0.97mol) along with an excess amount of dichloromethane (265.0g, 3.12 mol) was charged to a reactor containing benzyl triethylammonium chloride (13 mmol), dissolved in 50 ml of water. The bench scale reactions were all carried out in a Parr 4520 bench top pressure reactor coupled to a Parr 4841 temperature controller. The method produced a 50.0 percent yield of the product BCM after a reaction time of 12 to 13 hours. The main objective for this investigation was to optimize the abovementioned reaction with respect to yield and reactor throughput. Quantitative analysis of BCM was performed on a Focus Gas Chromatograph, fitted with a flame ionization detector, and a BP20 column (30m × 0,32mm ID × 0,25 mm). Delta software, version 5.0, was applied for data collection and processing. The injector and detector port were set at 250°C and 280°C, respectively. The oven temperature was set and held at 40°C for a period of 2 minutes, then gradually increased at a rate of 10°C/min to 130°C, with the final hold time set for 1 minute. An analytical method for the quantitative analysis of BCM was developed, optimized and validated. Validation of the analytical method commenced over a period of three days, and focussed the following validation parameters: Accuracy, precision, and ruggedness. Statistical evaluation of the results obtained for precision showed that the error between individual injections is less than 2 percent for each component. However, ANOVA analysis showed a significant difference between the mean response factors obtained in the three day period (p-value < 0.05). Thus we could conclude that the response factors had to be determined on each day before quantitatively analyzing samples. The accuracy of the analytical method was assessed by using the percent recovery method. Results obtained showed that a mean percent recovery of 100.18 percent was obtained for BCM, with the absolute bias = 0.0004, and the percent bias = 0.18 percent. Hence the 95 confidence intervals for the percent recovery and percent bias are given by: (Lz, Uz) = (100.56 percent percent 102.15 percent), 13 (LPB, UPB) = (0.56 percent, 2.15 percent), respectively. Since the 95 percent confidence interval for the percent recovery contains 100, or equivalently, the 95 percent confidence interval for percent bias contains 0, the assay method is considered accurate and validated for BCM. In the same manner the accuracy and percent recovery for DCM and DBM was evaluated. The method was found to be accurate and validated for DBM, however, slightly biased in determining the recovered amount of DCM. With the analytical method validated, the batch production process could be evaluated. A total of six process variables, namely reaction time, water amount, temperature, volume of the two phases, stirring rate, and catalyst concentration, were selected for the study. The effects of the individual variables were determined in the classical manner, by varying only the one of interest while keeping all others constant. The experimental data generated was fit to a quadratic response surface model. The profile plots that were obtained from this model allowed a visual representation of the effect of the six variables. The experimental results obtained showed that the reaction follows pseudo zero-order kinetics and that the rate of the reaction is directly proportional to the concentration of the catalyst. The reaction obeys the Arrhenius equation, and the relatively high activation energy of 87kJ.mol -1 signifies that the rate constant is strongly dependent on the temperature of the reaction. The results also showed that the formation of BCM is favoured by an increase in the reaction temperature, catalyst concentration, and a high organic: aqueous phase ratio. Thus the synthesis of BCM using phase transfer catalyst could be optimised, to obtain a 100 percent yield BCM, by increasing both the reaction temperature to 105°C, and the concentration of the phase transfer catalyst -benzyl triethylammonium chloride - to 5.36 mol percent. The reaction time was also reduced to 6 hours.
- Full Text:
- Date Issued: 2011
- Authors: Brooks, Lancelot L
- Date: 2011
- Subjects: Chemistry, Analytic , Fire extinguishing agents , Chemical systems , Physical science
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10382 , http://hdl.handle.net/10948/d1008162 , Chemistry, Analytic , Fire extinguishing agents , Chemical systems , Physical science
- Description: The synthesis of bromochloromethane (BCM) in a batch reactor, using phase transfer catalysis, was investigated. During the synthetic procedure, sodium bromide (100.0g, 0.97mol) along with an excess amount of dichloromethane (265.0g, 3.12 mol) was charged to a reactor containing benzyl triethylammonium chloride (13 mmol), dissolved in 50 ml of water. The bench scale reactions were all carried out in a Parr 4520 bench top pressure reactor coupled to a Parr 4841 temperature controller. The method produced a 50.0 percent yield of the product BCM after a reaction time of 12 to 13 hours. The main objective for this investigation was to optimize the abovementioned reaction with respect to yield and reactor throughput. Quantitative analysis of BCM was performed on a Focus Gas Chromatograph, fitted with a flame ionization detector, and a BP20 column (30m × 0,32mm ID × 0,25 mm). Delta software, version 5.0, was applied for data collection and processing. The injector and detector port were set at 250°C and 280°C, respectively. The oven temperature was set and held at 40°C for a period of 2 minutes, then gradually increased at a rate of 10°C/min to 130°C, with the final hold time set for 1 minute. An analytical method for the quantitative analysis of BCM was developed, optimized and validated. Validation of the analytical method commenced over a period of three days, and focussed the following validation parameters: Accuracy, precision, and ruggedness. Statistical evaluation of the results obtained for precision showed that the error between individual injections is less than 2 percent for each component. However, ANOVA analysis showed a significant difference between the mean response factors obtained in the three day period (p-value < 0.05). Thus we could conclude that the response factors had to be determined on each day before quantitatively analyzing samples. The accuracy of the analytical method was assessed by using the percent recovery method. Results obtained showed that a mean percent recovery of 100.18 percent was obtained for BCM, with the absolute bias = 0.0004, and the percent bias = 0.18 percent. Hence the 95 confidence intervals for the percent recovery and percent bias are given by: (Lz, Uz) = (100.56 percent percent 102.15 percent), 13 (LPB, UPB) = (0.56 percent, 2.15 percent), respectively. Since the 95 percent confidence interval for the percent recovery contains 100, or equivalently, the 95 percent confidence interval for percent bias contains 0, the assay method is considered accurate and validated for BCM. In the same manner the accuracy and percent recovery for DCM and DBM was evaluated. The method was found to be accurate and validated for DBM, however, slightly biased in determining the recovered amount of DCM. With the analytical method validated, the batch production process could be evaluated. A total of six process variables, namely reaction time, water amount, temperature, volume of the two phases, stirring rate, and catalyst concentration, were selected for the study. The effects of the individual variables were determined in the classical manner, by varying only the one of interest while keeping all others constant. The experimental data generated was fit to a quadratic response surface model. The profile plots that were obtained from this model allowed a visual representation of the effect of the six variables. The experimental results obtained showed that the reaction follows pseudo zero-order kinetics and that the rate of the reaction is directly proportional to the concentration of the catalyst. The reaction obeys the Arrhenius equation, and the relatively high activation energy of 87kJ.mol -1 signifies that the rate constant is strongly dependent on the temperature of the reaction. The results also showed that the formation of BCM is favoured by an increase in the reaction temperature, catalyst concentration, and a high organic: aqueous phase ratio. Thus the synthesis of BCM using phase transfer catalyst could be optimised, to obtain a 100 percent yield BCM, by increasing both the reaction temperature to 105°C, and the concentration of the phase transfer catalyst -benzyl triethylammonium chloride - to 5.36 mol percent. The reaction time was also reduced to 6 hours.
- Full Text:
- Date Issued: 2011
An investigation of the structural problems in relation to some synthetic waxes
- Authors: Stokhuyzen, Rolf
- Date: 1970
- Subjects: Chemistry, Analytic , Waxes , Synthetic products
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4443 , http://hdl.handle.net/10962/d1007695 , Chemistry, Analytic , Waxes , Synthetic products
- Description: From Introduction: Wax and wax-like substances have been defined in many ways. One reasonably extensive definition, by Hatt and Lamberton (1956) is given below: "The term "wax" seems best used to denote a group of substances which qualitatively have certain physical properties in common. These properties are familiar ones, for in almost all countries some natural wax - beeswax, Japan wax, Chinese insect wax, the carnauba and candelilla waxes of the Americas - has been an important material in art and industry from prehistoric times. Waxes are understood to be opaque or translucent solids, which melt without decomposition to form mobile liquids at temperatures in the region of 100⁰C. They differ in hardness, but are all essentially soft substances with poor mechanical strength. Most waxes can be easily shaped or kneaded at a little above ambient temperatures. In fact, the term could easily have been made to cover the whole class now named thermoplastics." Pure n-paraffins would be too crystalline and brittle for use as waxes, whereas mixtures of n-paraffins have some valuable properties. The molecules bear such close resemblance to one another that they form mixed crystals of lowered crystallinity and the melting point is a function of the mean molecular weight. This is a desirable feature for it permits crystallinity and brittleness to be reduced without a marked loss in the melting point or hardness. It also allows a mixture to simulate a pure compound very closely. Waxes, in general, have been put to a large number of uses. They are used, for example, in candles, polishes, paper-coating, plastics, printing, matches, rust protectants and insulation. Each application requires its own appropriate range of wax properties.
- Full Text:
- Date Issued: 1970
- Authors: Stokhuyzen, Rolf
- Date: 1970
- Subjects: Chemistry, Analytic , Waxes , Synthetic products
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4443 , http://hdl.handle.net/10962/d1007695 , Chemistry, Analytic , Waxes , Synthetic products
- Description: From Introduction: Wax and wax-like substances have been defined in many ways. One reasonably extensive definition, by Hatt and Lamberton (1956) is given below: "The term "wax" seems best used to denote a group of substances which qualitatively have certain physical properties in common. These properties are familiar ones, for in almost all countries some natural wax - beeswax, Japan wax, Chinese insect wax, the carnauba and candelilla waxes of the Americas - has been an important material in art and industry from prehistoric times. Waxes are understood to be opaque or translucent solids, which melt without decomposition to form mobile liquids at temperatures in the region of 100⁰C. They differ in hardness, but are all essentially soft substances with poor mechanical strength. Most waxes can be easily shaped or kneaded at a little above ambient temperatures. In fact, the term could easily have been made to cover the whole class now named thermoplastics." Pure n-paraffins would be too crystalline and brittle for use as waxes, whereas mixtures of n-paraffins have some valuable properties. The molecules bear such close resemblance to one another that they form mixed crystals of lowered crystallinity and the melting point is a function of the mean molecular weight. This is a desirable feature for it permits crystallinity and brittleness to be reduced without a marked loss in the melting point or hardness. It also allows a mixture to simulate a pure compound very closely. Waxes, in general, have been put to a large number of uses. They are used, for example, in candles, polishes, paper-coating, plastics, printing, matches, rust protectants and insulation. Each application requires its own appropriate range of wax properties.
- Full Text:
- Date Issued: 1970
- «
- ‹
- 1
- ›
- »