Bioaccumulation and histopathology of copper in Oreochromis mossambicus
- Authors: Naigaga, Irene
- Date: 2003
- Subjects: Mozambique tilapia , Copper , Marine toxins , Fishes -- Effect of water pollution on , Water -- Pollution -- Environmental aspects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5234 , http://hdl.handle.net/10962/d1005077 , Mozambique tilapia , Copper , Marine toxins , Fishes -- Effect of water pollution on , Water -- Pollution -- Environmental aspects
- Description: Cu is one of the most toxic elements that affect fish populations when the fish are exposed to concentrations exceeding their tolerance. To investigate the effects of elementary Cu on aspects of bioconcentration, histology and behaviour, O. mossambicus were exposed to 0 and 0.75 ± 0.20 mg/l of Cu for 96 hours (short-term study), and 0, 0.11 ± 0.02, 0.29 ± 0.02, and 0.47 ± 0.04 mg/l of Cu for 64 days (longterm study) under controlled conditions in the laboratory. For the long-term study fish were sampled for gills, liver, and kidney Cu accumulation analysis after 1, 32 and 64 days of exposure and after 1, 2, 4, 16, 32, and 64 days for gills, liver and spleen histology analysis. Cu accumulation was concentration-duration dependent with the highest accumulation capacity in the liver. A multifactor linear model was developed for the relationship between exposure dose, exposure duration and Cu accumulation in the organs with the liver model: Log L = 3.35 + 0.85W + 0.31T (r² = 0.892) giving a better fit than the gills: G = −35.09 + 10.58W + 17.58T (r² = 0.632). Where L = Cu accumulation values in the liver, G = Cu accumulation values in the gills (both in μg/g dry mass); W = exposure dose in water (mg/l); and T = exposure time (days). Using this model Cu accumulation in organs can be estimated when exposure concentration and duration is known. This model should be tested under different conditions to determine the potential of the model in monitoring Cu toxicity in the environment. Lesions were observed in the liver, gills and spleen in all Cu treatments at all exposure concentration and exposure durations. However, the incidence and the degree of alteration was related to the concentration of Cu and duration of exposure. The sequential appearance of lesions in the order of, hepatic vacuolar degeneration, fatty degeneration and necrosis indicated a gradual increase in liver damage with larger duration of exposure time and increasing Cu concentration. The initial lesions in the gills were manifested as hypertrophy and hyperplasia of the gill epithelium causing increase in the thickness of the secondary lamellae, mucous cell hypertrophy and proliferation, mucous hypersecretion, proliferation of eosinophilic granule cells and hyperplasia of interlamellar cells. With increase in exposure time, necrosis of the eosinophilic granule cells, lamellar oedema, epithelial desquamation and increase in severity of lamellar hyperplasia were observed. These lesions indicated an initial defence mechanism of the fish against Cu toxicity followed by advanced histological changes that were related to Cu concentration and duration of exposure. Changes in the spleen were haemosiderosis, increase in the white pulp and macrophage centres, reduction in the red pulp, and necrosis suggesting that fish exposed to environmentally relevant levels of Cu may be histopathologically altered leading to anaemia and immunosuppression. Regression analysis was used to quantify the relationship between the total activity of the fish, and duration of exposure. There was a gradual decline in fish activity related to Cu concentration and duration of exposure before introducing food into the tanks. There was a constant activity after introducing food in the tanks at the control and 0.11 ± 0.02 mg/l Cu exposure levels irrespective of exposure time. Analysis of covariance (ANCOVA) was used to test for the difference in slopes between treatments. There was no significant difference (p > 0.05) between slopes of the control and 0.11 ± 0.02 mg/l Cu, and between 0.29 ± 0.02 and 47 ± 0.04 mg/l Cu before and after introducing food in the tanks. The slopes of both the control and 0.11 ± 0.02 mg/l Cu were significantly different from those of 0.29 ± 0.02 and 0.47 ± 0.04 mg/l Cu (p < 0.05). There were significant differences in the mean opercular movements per minute between treatments (p < 0.05). There was hyperventilation at 0.11 ± 0.02 mg/l Cu i.e. 87 ± 18 opercular movements per minute (mean ± standard deviation) and hypoventilation at 0.29 ± 0.02 and 0.47 ± 0.04 mg/l Cu i.e. 37 ± 34 and 13 ± 6 opercular movements per minute compared to the control. Hypo- and hyperventilation were related to the lesser and greater gill damage, respectively. In conclusion Cu accumulation and effects on histology of the liver, gills and were related to the concentration of Cu in the water and duration of exposure showing a gradual increase in incidence and intensity with larger duration of exposure time and increasing Cu concentration. The fish were initially able to homeostatically regulate and detoxify Cu. However, as the exposure continued, the homeostatic mechanism appears to have failed to cope with the increasing metal burden causing advanced histological changes.
- Full Text:
Progress towards the development and implementation of an unambiguous copper wire fingerprinting system
- Authors: Poole, Martin
- Date: 2003
- Subjects: Electroplating , Copper , Telecommunication , Theft -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5484 , http://hdl.handle.net/10962/d1005270 , Electroplating , Copper , Telecommunication , Theft -- Prevention
- Description: The Telecommunications industry in Southern Africa is faced with the problem of theft of the signal carrying copper wire, both from the ground and from telephone poles. In many cases, if the offenders are caught, the prosecuting party has no way of proving that the wire is the property of any one Telecommunication company, as any inked markings on the insulating sheaths have been burned off along with the insulation and protective coatings themselves. Through this work we * describe the problem, * specify the necessary and preferred technical properties of a viable solution, * report the preliminary investigations into the devising of an unambiguous "fingerprinting" of the 0.5 mm wires, including some of those solutions that, upon investigation, appear non-viable, * describe the development and implementation of an electrochemical marker with detection mechanism which has shown in proof-of-principle to work, * outline the road-map of necessary future work.
- Full Text:
Removal of copper and nickel from solution by the non-viable biomass of the water fern Azolla filiculoides in an upscaled fixed-bed column system
- Authors: Thompson, Denis Alan
- Date: 2001
- Subjects: Copper , Nickel , Azolla , Heavy metals -- Absorption and adsorption
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3914 , http://hdl.handle.net/10962/d1003973 , Copper , Nickel , Azolla , Heavy metals -- Absorption and adsorption
- Description: The potential of non-viable Azalia filiculaides for the removal of Cu and Ni from aqueous solutions and the possibility of scaling up existing lab scale Azalia column systems was investigated. The effects of factors such as metal starting concentration, pH and two metals in solution on the removal of Ni and Cu from aqueous solution by dried and crushed Azalia biomass were studied in batch systems. Aqueous solutions of Ni with starting concentrations between 1000 and 2000J.lmolll gave the most efficient Ni removal by Azalla biomass. For Cu the optimum starting concentration for adsorption was 50J.lmol/l. The adsorption capacity of both eu and Ni increased as the starting pH of the sorption media increased. The optimum pH for Ni adsorption was found at pH 7 and for Cu, at pH 5. - Awlla biomass had a higher. maximum binding capacity (qrnax) for Cu than for Ni at pH 5. The removal of both Cu allct Ni showed little or no variation with the presence another metal in solution. Kinetic studies show that both Cu and Ni adsorbed rapidly onto the Azalia biomass. The removal of Cu and Ni from aqueous solutions using non-viable Azalia biomass was investigated in a lab scale fixed-bed column and an upscaled 4L column system. The nonviable Azalla filiculaides biomass when dried and used in a column for adsorption of Cu and Ni showed good physical stability under many different conditions. Preparation of the biomass before it could be used in the columns was very simple and did not involve any significant pretreatment steps. Prolonged exposure to UV light decreases Azalia biomass capacity for Ni and Cu adsorption. Column adsorption of Cu and Ni from aqueous solutions was successfully upscaled approximately 100 times. Relative to the lab scale column, the 4L column performed better for the uptake of Cu and Ni per gram of biomass. The larger column was also able to operate at relatively higher flow rates. The biomass showed good reusability with little change in the amount of Ni adsorbed in 10 consecutive cycles. Electron micrographs showecf little or no change in the physical structure and integrity of the Azolla biomass after exposure to mineral acids, Ni solution and high flow rates over 10 consecutive adsorption and desorption cycles. As much as 80% Ni and 70 % Cu was recovered when desorption profiles were generated using O.lMHCI as a desorption agent. The 4L column system was also tested using a highly concen~rat:~ Ni plating bath solution.(Nicrolyte 1). Only 18 % of the Ni could be removed from the expended Nicrolyte 1 pla~Jng solution after treating only 25L, indicating that Azolla biomass is more suited for removal of metals from more dilute industrial effluents.
- Full Text:
The removal of toxic heavy metals from aqueous solutions by algal extracellular polysaccharides
- Authors: Selepe, Mamaropeng Marcus
- Date: 1999
- Subjects: Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3994 , http://hdl.handle.net/10962/d1004054 , Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Description: This study investigated the possible use of algal extracellular polysaccharide as a biosorbent for removal of heavy metals (copper and lead) from aqueous solutions as a means of bioremediation for metal containing effluents. This biopolymer has good biosorbent properties and a potential to provide a cost effective, selective and efficient purification system. A variety of environmental conditions induce the production of extracellular polysaccharides in algae. The production of exopolysaccharides by Dunaliella cultures was induced by nitrogen deficient conditions. A high ratio of carbon to nitrogen source considerably enhanced the polysaccharide release. Purified extracellular polysaccharide samples exhibited a monosaccharide composition consisting of the following sugars: xylose, arabinose, 2-0-methyl mannose, mannose, glucose and galactose. The relative abundance (%) of these sugars were calculated relative to xylose. The major sugar constituent was 2-0-methyl mannose, which was present at approximately 160% relative to xylose. The percentage relative abundance of other sugars was as follows: 18.8; 86.8; 85.3 and 22.3% for arabinose; mannose; glucose and galactose respectively. The identity of the various constituents were confirmed by mass spectrometry. The ability of Dunaliella exopolysaccharides to accumulate metals was investigated. The following parameters were studied because they affect metal uptake: solution pH, biomass concentration, temperature, time and metal concentration. The uptake of both copper and lead were pH dependent. However, metal uptake was not significantly affected by temperature. Kinetic studies showed that Dunaliella extracellular polysaccharides exhibit good bioremediation properties. Metal uptake was rapid. In addition, the exopolysaccharide has good metal binding capacity with an uptake capacity for lead of 80 mg/g from a solution containing initial lead concentration of approximately 40 mg/l. Competition studies revealed that the presence of a second metal in solution inhibits uptake of the other metal compared to uptake in single metal solution of that particular metal. The presence of lead inhibited the uptake of copper from approximately 65% in single metal solution to 10% in binary metal solution. The presence of copper also inhibited lead uptake, though not to the same extent. Higher concentrations of lead could not completely prevent removal of copper from solution and visa versa. The same was true for lead which could not be displaced by a four-fold concentration of copper. Instead, a certain percentage of copper was always removed showing that lead did not compete with copper for these binding sites. In conclusion it appears that, copper and lead bind to different sites on Dunaliella exopolysaccharides and that they exhibit selective or preferential removal of lead.
- Full Text:
The polarographic determination of trace elements in blister and refined copper
- Authors: Eve, Adrian John
- Date: 1954
- Subjects: Copper , Polarographs , Polarography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4467 , http://hdl.handle.net/10962/d1011769 , Copper , Polarographs , Polarography
- Description: In the complete analysis of copper the following impurities are generally determined: silver, gold, lead, arsenic, antimony, selenium, tellurium, iron, zinc, cobalt, nickel, oxygen, sulphur, and, less commonly, tin and phosphorus. The actual copper content varies around 99.0% in blister copper; in the refined metal the content is somewhat higher, usually over 99.9%. The concentrations of the individual impurities vary from tenths to thousandths of one per cent.
- Full Text: