Synthesis and evaluation of novel inhibitors of 1-Deoxy-D-xylolose-5-phosphate reductoisomerase as potential antimalarials
- Authors: Conibear, Anne Claire
- Date: 2013-07-19
- Subjects: Antimalarials -- Development , Malaria -- Chemotherapy , Drug development , Enzyme kinetics , Phosphate esters
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4451 , http://hdl.handle.net/10962/d1008282 , Antimalarials -- Development , Malaria -- Chemotherapy , Drug development , Enzyme kinetics , Phosphate esters
- Description: Malaria continues to be an enormous health-threat in the developing world and the emergence of drug resistance has further compounded the problem. The parasite-specific enzyme, 1-deoxY-D-xylulose-S-phosphate reductoisomerase (DXR), has recently been validated as a promising antimalarial drug target. The present study comprises a combination of synthetic, physical organic, computer modelling and bioassay techniques directed towards the development of novel DXR inhibitors. A range of 2-heteroarylamino-2-oxoethyl- and 2- heteroarylamino-2-oxopropyl phosphonate esters and their corresponding phosphonic acid salts have been synthesised as analogues of the highly active DXR inhibitor, fosmidomycin. Treatment of the heteroarylamino precursors with chloroacetyl chloride or chloropropionyl chloride afforded chloroamide intermediates, Arbuzov reactions of which led to the corresponding diethyl phosphonate esters. Hydrolysis of the esters has been effected using bromotrimethylsilane. Twenty-four new compounds have been prepared and fully characterised using elemental (HRMS or combustion) and spectroscopic (1- and 2-D NMR and IR) analysis. A 31p NMR kinetic study has been carried out on the two-step silylation reaction involved in the hydrolysis of the phosphonate esters and has provided activation parameters for the reaction. The kinetic analysis was refined using a computational method to give an improved fit with the experimental data. Saturation transfer difference (STD) NMR analysis, computer-simulated docking and enzyme inhibition assays have been used to evaluate the enzyme-binding and -inhibition potential of the synthesised ligands. Minimal to moderate inhibitory activity has been observed and several structure-activity relationships have been identified. In silica exploration of the DXR active site has revealed an additional binding pocket and information on the topology of the active site has led to the de novo design of a new series of potential ligands. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Authors: Conibear, Anne Claire
- Date: 2013-07-19
- Subjects: Antimalarials -- Development , Malaria -- Chemotherapy , Drug development , Enzyme kinetics , Phosphate esters
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4451 , http://hdl.handle.net/10962/d1008282 , Antimalarials -- Development , Malaria -- Chemotherapy , Drug development , Enzyme kinetics , Phosphate esters
- Description: Malaria continues to be an enormous health-threat in the developing world and the emergence of drug resistance has further compounded the problem. The parasite-specific enzyme, 1-deoxY-D-xylulose-S-phosphate reductoisomerase (DXR), has recently been validated as a promising antimalarial drug target. The present study comprises a combination of synthetic, physical organic, computer modelling and bioassay techniques directed towards the development of novel DXR inhibitors. A range of 2-heteroarylamino-2-oxoethyl- and 2- heteroarylamino-2-oxopropyl phosphonate esters and their corresponding phosphonic acid salts have been synthesised as analogues of the highly active DXR inhibitor, fosmidomycin. Treatment of the heteroarylamino precursors with chloroacetyl chloride or chloropropionyl chloride afforded chloroamide intermediates, Arbuzov reactions of which led to the corresponding diethyl phosphonate esters. Hydrolysis of the esters has been effected using bromotrimethylsilane. Twenty-four new compounds have been prepared and fully characterised using elemental (HRMS or combustion) and spectroscopic (1- and 2-D NMR and IR) analysis. A 31p NMR kinetic study has been carried out on the two-step silylation reaction involved in the hydrolysis of the phosphonate esters and has provided activation parameters for the reaction. The kinetic analysis was refined using a computational method to give an improved fit with the experimental data. Saturation transfer difference (STD) NMR analysis, computer-simulated docking and enzyme inhibition assays have been used to evaluate the enzyme-binding and -inhibition potential of the synthesised ligands. Minimal to moderate inhibitory activity has been observed and several structure-activity relationships have been identified. In silica exploration of the DXR active site has revealed an additional binding pocket and information on the topology of the active site has led to the de novo design of a new series of potential ligands. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
Marine anti-malarial isonitriles : a synthetic and computational study
- Authors: Adendorff, Matthew Ralph
- Date: 2011 , 2010-05-17
- Subjects: Isocyanides , Isocyanates , Marine pharmacology , Antimalarials , Antimalarials -- Development , Drug development
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4398 , http://hdl.handle.net/10962/d1006674 , Isocyanides , Isocyanates , Marine pharmacology , Antimalarials , Antimalarials -- Development , Drug development
- Description: The development of Plasmodium falciparum malarial resistance to the current armoury of anti-malarial drugs requires the development of new treatments to help combat this disease. The marine environment is a well established source of potential pharmaceuticals. Of interest to us are isonitrile, isocyanate and isothiocyanate compounds isolated from marine sponges and molluscs which have exhibited nano-molar anti-plasmodial activities. Through quantitative structure-activity relation studies (QSAR), a literature precedent exists for a pseudoreceptor model from which a pharmacophore for the design of novel anti-malarial agents was proposed. The current theory suggests that these marine compounds exert their inhibitory action through interfering with the heme detoxification pathway in P. falciparum. We propose that the computational methods used to draw detailed conclusions about the mode of action of these marine compounds were inadequate. This thesis addresses this problem using contemporary computational methodologies and seeks to propose a more robust method for the rational design of new anti-malarial drug compounds that inhibit heme polymerization to hemozoin. In order to investigate the interactions of the marine compounds with their heme targets, a series of modern computational procedures were formulated, validated and then applied to theoretical systems. The validations of these algorithms, before their application to the marine compound-heme systems, were achieved through two case studies. The first was used to investigate the applicability of the statistical docking algorithm AutoDock to be used for the exploration of conformational space around the heme target. A theoretical P. falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) enzyme model, constructed by the Biochemistry Department at Rhodes University, provided the ideal model to validate the AutoDock program. The protein model was accordingly subjected to rigorous docking simulations with over 30 different ligand molecules using the AutoDock algorithm which allowed for the docking algorithm’s limitations to be ascertained and improved upon. This investigation facilitated the successful validation of the protein model, which can now be used for the rational design of new PfDXR-inhibiting anti-plasmodial compounds, as well as enabling us to propose an improvement of the docking algorithm for application to the heme systems. The second case study was used to investigate the applicability of an ab initio molecular dynamics algorithm for simulation of bond breaking/forming events between the marine compounds and their heme target. This validation involved the exploration of intermolecular interactions in a naturally occurring nonoligomeric zipper using the Car-Parrinello Molecular Dynamics (CPMD) method. This study allowed us to propose a model for the intermolecular forces responsible for zipper self-assembly and showcased the CPMD method’s abilities to simulate and predict bond forming/breaking events. Data from the computational analyses suggested that the interactions between marine isonitriles, isocyanates and isothiocyanates occur through bond-less electrostatic attractions rather than through formal intermolecular bonds as had been previously suggested. Accordingly, a simple bicyclic tertiary isonitrile (5.14) was synthesized using Kitano et al’s relatively underutilized isonitrile synthetic method for the conversion of tertiary alcohols to their corresponding isonitriles. This compound’s potential for heme detoxification inhibition was then explored in vitro via the pyridine-hemochrome assay. The assay data suggested that the synthesized isonitrile was capable of inhibiting heme polymerization in a similar fashion to the known inhibitor chloroquine. Attempts to synthesize tricyclic analogues of 5.14 were unsuccessful and highlighted the limitation of Kitano et al’s isonitrile synthetic methodology.
- Full Text:
- Date Issued: 2011
- Authors: Adendorff, Matthew Ralph
- Date: 2011 , 2010-05-17
- Subjects: Isocyanides , Isocyanates , Marine pharmacology , Antimalarials , Antimalarials -- Development , Drug development
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4398 , http://hdl.handle.net/10962/d1006674 , Isocyanides , Isocyanates , Marine pharmacology , Antimalarials , Antimalarials -- Development , Drug development
- Description: The development of Plasmodium falciparum malarial resistance to the current armoury of anti-malarial drugs requires the development of new treatments to help combat this disease. The marine environment is a well established source of potential pharmaceuticals. Of interest to us are isonitrile, isocyanate and isothiocyanate compounds isolated from marine sponges and molluscs which have exhibited nano-molar anti-plasmodial activities. Through quantitative structure-activity relation studies (QSAR), a literature precedent exists for a pseudoreceptor model from which a pharmacophore for the design of novel anti-malarial agents was proposed. The current theory suggests that these marine compounds exert their inhibitory action through interfering with the heme detoxification pathway in P. falciparum. We propose that the computational methods used to draw detailed conclusions about the mode of action of these marine compounds were inadequate. This thesis addresses this problem using contemporary computational methodologies and seeks to propose a more robust method for the rational design of new anti-malarial drug compounds that inhibit heme polymerization to hemozoin. In order to investigate the interactions of the marine compounds with their heme targets, a series of modern computational procedures were formulated, validated and then applied to theoretical systems. The validations of these algorithms, before their application to the marine compound-heme systems, were achieved through two case studies. The first was used to investigate the applicability of the statistical docking algorithm AutoDock to be used for the exploration of conformational space around the heme target. A theoretical P. falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) enzyme model, constructed by the Biochemistry Department at Rhodes University, provided the ideal model to validate the AutoDock program. The protein model was accordingly subjected to rigorous docking simulations with over 30 different ligand molecules using the AutoDock algorithm which allowed for the docking algorithm’s limitations to be ascertained and improved upon. This investigation facilitated the successful validation of the protein model, which can now be used for the rational design of new PfDXR-inhibiting anti-plasmodial compounds, as well as enabling us to propose an improvement of the docking algorithm for application to the heme systems. The second case study was used to investigate the applicability of an ab initio molecular dynamics algorithm for simulation of bond breaking/forming events between the marine compounds and their heme target. This validation involved the exploration of intermolecular interactions in a naturally occurring nonoligomeric zipper using the Car-Parrinello Molecular Dynamics (CPMD) method. This study allowed us to propose a model for the intermolecular forces responsible for zipper self-assembly and showcased the CPMD method’s abilities to simulate and predict bond forming/breaking events. Data from the computational analyses suggested that the interactions between marine isonitriles, isocyanates and isothiocyanates occur through bond-less electrostatic attractions rather than through formal intermolecular bonds as had been previously suggested. Accordingly, a simple bicyclic tertiary isonitrile (5.14) was synthesized using Kitano et al’s relatively underutilized isonitrile synthetic method for the conversion of tertiary alcohols to their corresponding isonitriles. This compound’s potential for heme detoxification inhibition was then explored in vitro via the pyridine-hemochrome assay. The assay data suggested that the synthesized isonitrile was capable of inhibiting heme polymerization in a similar fashion to the known inhibitor chloroquine. Attempts to synthesize tricyclic analogues of 5.14 were unsuccessful and highlighted the limitation of Kitano et al’s isonitrile synthetic methodology.
- Full Text:
- Date Issued: 2011
Development and in vitro evaluation of a clobetasol 17-propionate topical cream formulation
- Authors: Wa Kasongo, Kasongo
- Date: 2007
- Subjects: Adrenocortical hormones , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Drug development , Dermatopharmacology
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3799 , http://hdl.handle.net/10962/d1003277 , Adrenocortical hormones , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Drug development , Dermatopharmacology
- Description: One of the primary contributing factors to the escalating costs of health care is the high cost of innovator pharmaceutical products. As a consequence, health authorities in various countries and in particular in the developing world have identified generic prescribing and generic substitution as possible strategies to contain the escalating costs of health care provision. There is therefore a need for formulation scientists in developing countries to invest more time in the research and development of generic formulations. Clobetasol 17-propionate (CP) generic cream formulations containing 0.05% w/w of the drug were manufactured and characterized using in vitro testing. Formulation development studies were preceded by the development and validation of an RP-HPLC with UV detection for the quantitation and characterization of CP in innovator and generic cream formulations during formulation development and assessment studies. Furthermore the in vitro release ates of CP release from innovator and generic cream formulations were monitored using a validated in vitro release test method developed in these studies. The formulation of CP cream products was accomplished using a variety of commercially available mixed primary emulsifiers, such as Estol® 1474, Ritapro® 200, Emulcire® 61 WL and Gelot® 64. Successful formulations were selected based on their ability to remain physically stable immediately after manufacture and for 24 hours after storage at room temperature (22°C). Estol® 1474 was found to produce an unstable cream and was therefore not investigated further. The other three emulgents produced stable creams, but only the in vitro release profile of CP from a cream manufactured to contain Gelot® 64 was found to be statistically similar to that of the innovator formulation. Therefore the cream containing Gelot® 64 was selected as the most appropriate prototype generic cream formulation and was characterized in vitro in terms of CP content, viscosity, pH and in vitro release rate. Data generated from these studies were compared to those of the innovator product, Dermovate® cream, using statistical methods. The CP content, pH and in vitro release rate data of the CP formulation were similar to those of the innovator product, however the intrinsic viscosity of Dermovate® cream was almost three (3) times greater than the intrinsic viscosity of the test formulation developed using Gelot® 64. The CP cream formulation developed in these studies was stored for 4 weeks at 40 ± 2°C and 25 ± 5% RH in an incubator and the formulation was found to be stable. A formulation has been developed and assessed and found to be suitable for use as a topical semi-solid dosage form for CP.
- Full Text:
- Date Issued: 2007
- Authors: Wa Kasongo, Kasongo
- Date: 2007
- Subjects: Adrenocortical hormones , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Drug development , Dermatopharmacology
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3799 , http://hdl.handle.net/10962/d1003277 , Adrenocortical hormones , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Drug development , Dermatopharmacology
- Description: One of the primary contributing factors to the escalating costs of health care is the high cost of innovator pharmaceutical products. As a consequence, health authorities in various countries and in particular in the developing world have identified generic prescribing and generic substitution as possible strategies to contain the escalating costs of health care provision. There is therefore a need for formulation scientists in developing countries to invest more time in the research and development of generic formulations. Clobetasol 17-propionate (CP) generic cream formulations containing 0.05% w/w of the drug were manufactured and characterized using in vitro testing. Formulation development studies were preceded by the development and validation of an RP-HPLC with UV detection for the quantitation and characterization of CP in innovator and generic cream formulations during formulation development and assessment studies. Furthermore the in vitro release ates of CP release from innovator and generic cream formulations were monitored using a validated in vitro release test method developed in these studies. The formulation of CP cream products was accomplished using a variety of commercially available mixed primary emulsifiers, such as Estol® 1474, Ritapro® 200, Emulcire® 61 WL and Gelot® 64. Successful formulations were selected based on their ability to remain physically stable immediately after manufacture and for 24 hours after storage at room temperature (22°C). Estol® 1474 was found to produce an unstable cream and was therefore not investigated further. The other three emulgents produced stable creams, but only the in vitro release profile of CP from a cream manufactured to contain Gelot® 64 was found to be statistically similar to that of the innovator formulation. Therefore the cream containing Gelot® 64 was selected as the most appropriate prototype generic cream formulation and was characterized in vitro in terms of CP content, viscosity, pH and in vitro release rate. Data generated from these studies were compared to those of the innovator product, Dermovate® cream, using statistical methods. The CP content, pH and in vitro release rate data of the CP formulation were similar to those of the innovator product, however the intrinsic viscosity of Dermovate® cream was almost three (3) times greater than the intrinsic viscosity of the test formulation developed using Gelot® 64. The CP cream formulation developed in these studies was stored for 4 weeks at 40 ± 2°C and 25 ± 5% RH in an incubator and the formulation was found to be stable. A formulation has been developed and assessed and found to be suitable for use as a topical semi-solid dosage form for CP.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »