Lithostratigraphic correlation, mineralogy and geochemistry of the lower manganese orebody at the Kalagadi Manganese Mine in the Northern Cape Province of South Africa
- Authors: Rasmeni, Sonwabile
- Date: 2012
- Subjects: Manganese mines and mining -- South Africa , Manganese ores -- Geology -- South Africa , Mineralogy -- South Africa , Geochemistry -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Geology)
- Identifier: vital:11526 , http://hdl.handle.net/10353/d1016155 , Manganese mines and mining -- South Africa , Manganese ores -- Geology -- South Africa , Mineralogy -- South Africa , Geochemistry -- South Africa
- Description: The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly 0.01wt% and 0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
- Full Text:
- Date Issued: 2012
- Authors: Rasmeni, Sonwabile
- Date: 2012
- Subjects: Manganese mines and mining -- South Africa , Manganese ores -- Geology -- South Africa , Mineralogy -- South Africa , Geochemistry -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Geology)
- Identifier: vital:11526 , http://hdl.handle.net/10353/d1016155 , Manganese mines and mining -- South Africa , Manganese ores -- Geology -- South Africa , Mineralogy -- South Africa , Geochemistry -- South Africa
- Description: The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly 0.01wt% and 0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
- Full Text:
- Date Issued: 2012
The nature of olivine-rich cumulate rocks of the lower critical and lower zones of the northwestern Bushveld Complex
- Authors: Haikney, Susan Ann
- Date: 1993
- Subjects: Geochemistry -- South Africa , Igneous rocks -- South Africa , Olivine -- South Africa , Bushveld Complex (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4980 , http://hdl.handle.net/10962/d1005592 , Geochemistry -- South Africa , Igneous rocks -- South Africa , Olivine -- South Africa , Bushveld Complex (South Africa)
- Description: Boreholes NG1 and NG2 were drilled on the farm Nooitgedacht 406 KQ to intersect the lower Critical and lower Zones of the western Bushveld Complex. The aim of this study is to describe the textural features and chemical characteristics of the olivine-bearing rocks in the intersections, as determined by petrographic studies, XRF analysis and microprobe analysis. The olivine-bearing rocks are dunites, harzburgites and olivine pyroxenites. They comprise olivine and orthopyroxene, with minor chromite, clinopyroxene and plagioclase, and their textures vary between adcumulate, mesocumulate and poikilitic. The sequence intersected can be broadly correlated with that in the eastern Bushveld Complex. Of the whole-rock inter-element ratios, the MMF (MgO)/[MgO+FeO])ratio is the clearest indicator of cyclicity. The olivine-rich rocks are more primitive than the associated rocks, and seem to become more primitive with height in most intervals. The plagioclase in the olivine-bearing rocks is unusually sodic in corrposition, having a maximum Na₂0 content of 8.12%. A comparison of olivine and plagioclase compositions with those in other intrusions has revealed that the only other major intrusion with sodic plagioclase is the Kiglapait intrusion of Canada. In the Kiglapait intrusion the sodic plagioclase occurs in conjunction with fayalitic olivine as opposed to the forsteritic variety of this study. Chemical variations in the rocks sampled indicate that periodic replenishment of the magma from which the rocks crystallised must have occurred. In some of the olivine-bearing intervals where little fractionation is evident, replenishment seems to have been continuous. In other intervals fractionation appears to have continued uninterrupted for significant periods, prior to rejuvenation by fresh influxes of magma.
- Full Text:
- Date Issued: 1993
- Authors: Haikney, Susan Ann
- Date: 1993
- Subjects: Geochemistry -- South Africa , Igneous rocks -- South Africa , Olivine -- South Africa , Bushveld Complex (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4980 , http://hdl.handle.net/10962/d1005592 , Geochemistry -- South Africa , Igneous rocks -- South Africa , Olivine -- South Africa , Bushveld Complex (South Africa)
- Description: Boreholes NG1 and NG2 were drilled on the farm Nooitgedacht 406 KQ to intersect the lower Critical and lower Zones of the western Bushveld Complex. The aim of this study is to describe the textural features and chemical characteristics of the olivine-bearing rocks in the intersections, as determined by petrographic studies, XRF analysis and microprobe analysis. The olivine-bearing rocks are dunites, harzburgites and olivine pyroxenites. They comprise olivine and orthopyroxene, with minor chromite, clinopyroxene and plagioclase, and their textures vary between adcumulate, mesocumulate and poikilitic. The sequence intersected can be broadly correlated with that in the eastern Bushveld Complex. Of the whole-rock inter-element ratios, the MMF (MgO)/[MgO+FeO])ratio is the clearest indicator of cyclicity. The olivine-rich rocks are more primitive than the associated rocks, and seem to become more primitive with height in most intervals. The plagioclase in the olivine-bearing rocks is unusually sodic in corrposition, having a maximum Na₂0 content of 8.12%. A comparison of olivine and plagioclase compositions with those in other intrusions has revealed that the only other major intrusion with sodic plagioclase is the Kiglapait intrusion of Canada. In the Kiglapait intrusion the sodic plagioclase occurs in conjunction with fayalitic olivine as opposed to the forsteritic variety of this study. Chemical variations in the rocks sampled indicate that periodic replenishment of the magma from which the rocks crystallised must have occurred. In some of the olivine-bearing intervals where little fractionation is evident, replenishment seems to have been continuous. In other intervals fractionation appears to have continued uninterrupted for significant periods, prior to rejuvenation by fresh influxes of magma.
- Full Text:
- Date Issued: 1993
- «
- ‹
- 1
- ›
- »