Characterization and application of phthalocyanine-gold nanoparticle conjugates
- Authors: Tombe, Sekai Lana
- Date: 2013
- Subjects: Phthalocyanines , Gold , Zinc , Nanoparticles , Bioconjugates , Photochemistry , Photocatalysis , Electrospinning , Polymers , Pollutants , Phenols , Azo dyes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4293 , http://hdl.handle.net/10962/d1004517 , Phthalocyanines , Gold , Zinc , Nanoparticles , Bioconjugates , Photochemistry , Photocatalysis , Electrospinning , Polymers , Pollutants , Phenols , Azo dyes
- Description: This work presents the syntheses, photophysical and photochemical characterization of arylthio zinc phthalocyanines and their gold nanoparticle conjugates. Spectroscopic and microscopic studies confirmed the formation of the phthalocyanine-gold nanoparticle conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines. The studies showed that the presence of gold nanoparticles significantly lowered fluorescence quantum yields and lifetimes. However, this interaction did not restrict the formation of excited singlet and triplet states and hence the formation of singlet oxygen required for photocatalysis. The conjugates showed significantly higher singlet oxygen quantum yields and therefore enhanced photocatalytic activity compared to the phthalocyanines. The zinc phthalocyanines and their gold nanoparticle conjugates were successfully incorporated into electrospun polymer fibers. Spectral characteristics of the functionalized electrospun fibers indicated that the phthalocyanines and phthalocyanine-gold nanoparticle conjugates were bound and their integrity was maintained within the polymeric fiber matrices. The photophysical and photochemical properties of the complexes were equally maintained within the electrospun fibers. The functionalized fibers were applied for the photoconversion of 4-chlorophenol and Orange G as model organic pollutants. , Microsoft� Word 2010 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
- Authors: Tombe, Sekai Lana
- Date: 2013
- Subjects: Phthalocyanines , Gold , Zinc , Nanoparticles , Bioconjugates , Photochemistry , Photocatalysis , Electrospinning , Polymers , Pollutants , Phenols , Azo dyes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4293 , http://hdl.handle.net/10962/d1004517 , Phthalocyanines , Gold , Zinc , Nanoparticles , Bioconjugates , Photochemistry , Photocatalysis , Electrospinning , Polymers , Pollutants , Phenols , Azo dyes
- Description: This work presents the syntheses, photophysical and photochemical characterization of arylthio zinc phthalocyanines and their gold nanoparticle conjugates. Spectroscopic and microscopic studies confirmed the formation of the phthalocyanine-gold nanoparticle conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines. The studies showed that the presence of gold nanoparticles significantly lowered fluorescence quantum yields and lifetimes. However, this interaction did not restrict the formation of excited singlet and triplet states and hence the formation of singlet oxygen required for photocatalysis. The conjugates showed significantly higher singlet oxygen quantum yields and therefore enhanced photocatalytic activity compared to the phthalocyanines. The zinc phthalocyanines and their gold nanoparticle conjugates were successfully incorporated into electrospun polymer fibers. Spectral characteristics of the functionalized electrospun fibers indicated that the phthalocyanines and phthalocyanine-gold nanoparticle conjugates were bound and their integrity was maintained within the polymeric fiber matrices. The photophysical and photochemical properties of the complexes were equally maintained within the electrospun fibers. The functionalized fibers were applied for the photoconversion of 4-chlorophenol and Orange G as model organic pollutants. , Microsoft� Word 2010 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
The separation of platinum and gold from an industrial feed solution
- Authors: Louw, Talana
- Date: 2008
- Subjects: Platinum -- Separation , Gold , Separation -- Technology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10400 , http://hdl.handle.net/10948/731 , Platinum -- Separation , Gold , Separation -- Technology
- Description: In this thesis, the aim was to develop resins which are platinum and gold specific to be utilized for the early removal of these metals from the industrial feed. Efforts were therefore directed towards the synthesis of silica based resins with active centra which were designed for platinum and gold specificity respectively. The large chlorometallate ions in the feed stream were characterized in terms of physical parameters relevant to phase distribution namely distortability (RD), charge density, softness (σ) etc. Matching cations for each of the types were investigated. In order to attempt the design of platinum specific resins different structural amines were used to aminate the silicone precursor and subsequently to fix these onto the silica framework. Two different solvents i.e. alcohol and dmf were used for this process, resulting in two sets of resins with different properties. For gold specific resins, various polyethers were attached to a different type of silicone precursor, which was attached to the silica framework. The design was based on previous experience with these ions with reference to their behaviour towards different types of cations. The platinum species PtCl6 2- and PtCl4 2-, the gold species AuCl4 -, as well as the most important contaminants in the feed stream were typified bearing in mind size, charge, charge density and distortability. Different types of cationic centra having differences in charge density, stereochemical crowding and extent of hydrophobicity were synthesized and tested both as solvent extractants (where possible) and silica based resins. The results indicated that partly screened secondary ammonium cationic resin species, which could be regarded as “intermediate”, proved to be satisfactory both in their high percentage extraction for PtCl4 2- and rejection of contaminants like chlororhodates, chloroiridates(III) and FeCl4 -. It was, however, necessary to work at a redox potential where iridium(IV) in the form of IrCl6 2- is absent. Various 2-aminoalkane resins were prepared with variation in the length of alkane group and synthesized in the two different solvents. The latter resulted in two sets of resins with different compactness also having significantly different properties with reference to platinum specificity, HCl effect and stripping potential. The 2- aminobutane and 2-aminoheptane resins both proved to be very satisfactory platinum specific resins with respect to selectivity, platinum capacity and stripping potential. The various physical parameters could be utilized to accommodate the chemical behaviour. To obtain gold specific resins, experiments were performed with resins having oxygen-donor atoms which can readily be protonated to form onium type cations for example amides and ether oxygen atoms. In the case of the latter, various polyethers with a different number of ether groups (polyether groups linked by ethylene and propylene groups) and variations of hydrophobicity (by substitution) have also been studied. Linked to the polyether groups were alkane and aryl groups. Those having 8 to 10 ether groups and aromatic tail ends proved to be moderately successful in terms of gold capacity and sharp breakthrough curves of their columns, however, platinum could not be very effectively rejected.
- Full Text:
- Date Issued: 2008
- Authors: Louw, Talana
- Date: 2008
- Subjects: Platinum -- Separation , Gold , Separation -- Technology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10400 , http://hdl.handle.net/10948/731 , Platinum -- Separation , Gold , Separation -- Technology
- Description: In this thesis, the aim was to develop resins which are platinum and gold specific to be utilized for the early removal of these metals from the industrial feed. Efforts were therefore directed towards the synthesis of silica based resins with active centra which were designed for platinum and gold specificity respectively. The large chlorometallate ions in the feed stream were characterized in terms of physical parameters relevant to phase distribution namely distortability (RD), charge density, softness (σ) etc. Matching cations for each of the types were investigated. In order to attempt the design of platinum specific resins different structural amines were used to aminate the silicone precursor and subsequently to fix these onto the silica framework. Two different solvents i.e. alcohol and dmf were used for this process, resulting in two sets of resins with different properties. For gold specific resins, various polyethers were attached to a different type of silicone precursor, which was attached to the silica framework. The design was based on previous experience with these ions with reference to their behaviour towards different types of cations. The platinum species PtCl6 2- and PtCl4 2-, the gold species AuCl4 -, as well as the most important contaminants in the feed stream were typified bearing in mind size, charge, charge density and distortability. Different types of cationic centra having differences in charge density, stereochemical crowding and extent of hydrophobicity were synthesized and tested both as solvent extractants (where possible) and silica based resins. The results indicated that partly screened secondary ammonium cationic resin species, which could be regarded as “intermediate”, proved to be satisfactory both in their high percentage extraction for PtCl4 2- and rejection of contaminants like chlororhodates, chloroiridates(III) and FeCl4 -. It was, however, necessary to work at a redox potential where iridium(IV) in the form of IrCl6 2- is absent. Various 2-aminoalkane resins were prepared with variation in the length of alkane group and synthesized in the two different solvents. The latter resulted in two sets of resins with different compactness also having significantly different properties with reference to platinum specificity, HCl effect and stripping potential. The 2- aminobutane and 2-aminoheptane resins both proved to be very satisfactory platinum specific resins with respect to selectivity, platinum capacity and stripping potential. The various physical parameters could be utilized to accommodate the chemical behaviour. To obtain gold specific resins, experiments were performed with resins having oxygen-donor atoms which can readily be protonated to form onium type cations for example amides and ether oxygen atoms. In the case of the latter, various polyethers with a different number of ether groups (polyether groups linked by ethylene and propylene groups) and variations of hydrophobicity (by substitution) have also been studied. Linked to the polyether groups were alkane and aryl groups. Those having 8 to 10 ether groups and aromatic tail ends proved to be moderately successful in terms of gold capacity and sharp breakthrough curves of their columns, however, platinum could not be very effectively rejected.
- Full Text:
- Date Issued: 2008
Electrochemical studies of gold bioaccumulation by yeast cell wall components
- Authors: Lack, Barbara Anne
- Date: 1999
- Subjects: Hydrometallurgy , Electrochemical analysis , Gold ores , Gold
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4311 , http://hdl.handle.net/10962/d1004969 , Hydrometallurgy , Electrochemical analysis , Gold ores , Gold
- Description: Gold, amongst other group 11 metals, was almost certainly one of the first three metals known to man. In addition to the economic importance of the metal, gold has a wide variety of applications in the medical, electrocatalytical and micro-electronics fields. However, the determination of gold ions in solution, with accuracy, precision, sensitivity and selectivity is still an interesting and much debated topic in analytical chemistry. A system whereby gold ions have been successfully detected employing an electrochemical technique, known as stripping voltammetry, has been developed. The electrochemical method was chosen over other available techniques for the sensitivity, particularly at low concentrations, and selectivity properties; notably in the presence of other metal ions. Under acidic conditions, the electrochemical technique was applied and the presence of gold(III), at a concentration of 2.53 x 10⁻⁵ mol dm⁻³ in a mine waste water sample, was detected. Biomass, in particular yeast and algal types, have been successfully employed in extracting low concentrations of gold ions from industrial effluents. The manipulation of the biological facility for mineral interaction, biohydrometallurgy, may yield numerous potential new technologies. South Africa in particular would benefit from this area of research, since the country is a major ore and metal refining country and if the output and the efficiency of the mines could be improved, even by a small percentage, the financial rewards would be vast. In this study, the application of adsorptive cathodic stripping voltammetry (AdCSV) of gold(III) in the presence of various Saccharomyces cerevisiae cell wall components, was investigated to determine which, if any, were involved specifically in the chemical binding of the gold ions. The chitin and mannan extracts showed the most promise with detection limits of 1.10 x 10⁻⁶ mol dm⁻³ and 9 x 10⁻⁹ mol dm⁻³, respectively; employing the AdCSV technique. A modification of the stripping voltammetry technique, Osteryoung square wave stripping voltammetry (OSWSV), provided the lowest detection limit, for gold(IIl) in the presence of mannan, of 1.70 x 10⁻¹¹ mol dm⁻³ ; utilising a modified carbon paste electrode. The detection of gold(III) has been shown to be dependent on the type of electrode employed, the electrolyte solution and the presence of interfering agents. The effect of copper(II) and silver(I) on the detection of the gold(III) in solution was investigated; whilst the silver(I) has shown no detrimental effects on gold (III) detection systems, copper(II) has indicated the possibility of forming an inter-metallic compound with the gold(III). However, mannan has shown to selectively and preferentially bind the gold(III) in the presence of a ten-fold excess of copper(II). Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, as well as computer modelling techniques were employed to further investIgate the mannan-gold(III) interaction and proposed complex formed. The NMR, IR and computer modelling data are in agreement with the electrochemical data on proposing a mannan-gold(III) complex. The co-ordination site was established to be in the vicinity of the H-I and H-2 protons and the gold(III) adopts a square-planar geometry upon co-ordination. The benefits of the research are useful from a biological perspective (i. e. as more is known about the binding sites, microbiologists/biochemists may work on the optimisation of parameters for these sites or work could be furthered into the enhanced expression of the sites) and an industrial one. In addition to the' two major benefits, an improved understanding of gold and its chemistry would be achieved, which is advantageous for other fields of research as well.
- Full Text:
- Date Issued: 1999
- Authors: Lack, Barbara Anne
- Date: 1999
- Subjects: Hydrometallurgy , Electrochemical analysis , Gold ores , Gold
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4311 , http://hdl.handle.net/10962/d1004969 , Hydrometallurgy , Electrochemical analysis , Gold ores , Gold
- Description: Gold, amongst other group 11 metals, was almost certainly one of the first three metals known to man. In addition to the economic importance of the metal, gold has a wide variety of applications in the medical, electrocatalytical and micro-electronics fields. However, the determination of gold ions in solution, with accuracy, precision, sensitivity and selectivity is still an interesting and much debated topic in analytical chemistry. A system whereby gold ions have been successfully detected employing an electrochemical technique, known as stripping voltammetry, has been developed. The electrochemical method was chosen over other available techniques for the sensitivity, particularly at low concentrations, and selectivity properties; notably in the presence of other metal ions. Under acidic conditions, the electrochemical technique was applied and the presence of gold(III), at a concentration of 2.53 x 10⁻⁵ mol dm⁻³ in a mine waste water sample, was detected. Biomass, in particular yeast and algal types, have been successfully employed in extracting low concentrations of gold ions from industrial effluents. The manipulation of the biological facility for mineral interaction, biohydrometallurgy, may yield numerous potential new technologies. South Africa in particular would benefit from this area of research, since the country is a major ore and metal refining country and if the output and the efficiency of the mines could be improved, even by a small percentage, the financial rewards would be vast. In this study, the application of adsorptive cathodic stripping voltammetry (AdCSV) of gold(III) in the presence of various Saccharomyces cerevisiae cell wall components, was investigated to determine which, if any, were involved specifically in the chemical binding of the gold ions. The chitin and mannan extracts showed the most promise with detection limits of 1.10 x 10⁻⁶ mol dm⁻³ and 9 x 10⁻⁹ mol dm⁻³, respectively; employing the AdCSV technique. A modification of the stripping voltammetry technique, Osteryoung square wave stripping voltammetry (OSWSV), provided the lowest detection limit, for gold(IIl) in the presence of mannan, of 1.70 x 10⁻¹¹ mol dm⁻³ ; utilising a modified carbon paste electrode. The detection of gold(III) has been shown to be dependent on the type of electrode employed, the electrolyte solution and the presence of interfering agents. The effect of copper(II) and silver(I) on the detection of the gold(III) in solution was investigated; whilst the silver(I) has shown no detrimental effects on gold (III) detection systems, copper(II) has indicated the possibility of forming an inter-metallic compound with the gold(III). However, mannan has shown to selectively and preferentially bind the gold(III) in the presence of a ten-fold excess of copper(II). Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, as well as computer modelling techniques were employed to further investIgate the mannan-gold(III) interaction and proposed complex formed. The NMR, IR and computer modelling data are in agreement with the electrochemical data on proposing a mannan-gold(III) complex. The co-ordination site was established to be in the vicinity of the H-I and H-2 protons and the gold(III) adopts a square-planar geometry upon co-ordination. The benefits of the research are useful from a biological perspective (i. e. as more is known about the binding sites, microbiologists/biochemists may work on the optimisation of parameters for these sites or work could be furthered into the enhanced expression of the sites) and an industrial one. In addition to the' two major benefits, an improved understanding of gold and its chemistry would be achieved, which is advantageous for other fields of research as well.
- Full Text:
- Date Issued: 1999
- «
- ‹
- 1
- ›
- »