Mobile phones interaction techniques for second economy people
- Authors: Edim, Azom Emmanuel
- Date: 2010
- Subjects: Rural development projects -- South Africa -- Eastern Cape , Poverty -- South Africa -- Eastern Cape , Cell phone systems -- South Africa -- Eastern Cape , User interfaces (Computer systems) , Human-computer interaction , Community development -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Computer Science)
- Identifier: vital:11392 , http://hdl.handle.net/10353/519 , Rural development projects -- South Africa -- Eastern Cape , Poverty -- South Africa -- Eastern Cape , Cell phone systems -- South Africa -- Eastern Cape , User interfaces (Computer systems) , Human-computer interaction , Community development -- South Africa -- Eastern Cape
- Description: Second economy people in developing countries are people living in communities that are underserved in terms of basic amenities and social services. Due to literacy challenges and user accessibility problems in rural communities, it is often difficult to design user interfaces that conform to the capabilities and cultural experiences of low-literacy rural community users. Rural community users are technologically illiterate and lack the knowledge of the potential of information and communication technologies. In order to embrace new technology, users will need to perceive the user interface and application as useful and easy to interact with. This requires proper understanding of the users and their socio-cultural environment. This will enable the interfaces and interactions to conform to their behaviours, motivations as well as cultural experiences and preferences and thus enhance usability and user experience. Mobile phones have the potential to increase access to information and provide a platform for economic development in rural communities. Rural communities have economic potential in terms of agriculture and micro-enterprises. Information technology can be used to enhance socio-economic activities and improve rural livelihood. We conducted a study to design user interfaces for a mobile commerce application for micro-entrepreneurs in a rural community in South Africa. The aim of the study was to design mobile interfaces and interaction techniques that are easy to use and meet the cultural preferences and experiences of users who have little to no previous experience of mobile commerce technology. And also to explore the potentials of information technologies rural community users, and bring mobile added value services to rural micro-entrepreneurs. We applied a user-centred design approach in Dwesa community and used qualitative and quantitative research methods to collect data for the design of the user interfaces (graphic user interface and voice user interface) and mobile commerce application. We identified and used several interface elements to design and finally evaluate the graphical user interface. The statistics analysis of the evaluation results show that the users in the community have positive perception of the usefulness of the application, the ease of use and intention to use the application. Community users with no prior experience with this technology were able to learn and understand the interface, recorded minimum errors and a high level of v precision during task performance when they interacted with the shop-owner graphic user interface. The voice user interface designed in this study consists of two flavours (dual tone multi-frequency input and voice input) for rural users. The evaluation results show that community users recorded higher tasks successes and minimum errors with the dual tone multi-frequency input interface than the voice only input interface. Also, a higher percentage of users prefer the dual tone multi-frequency input interface. The t-Test statistical analysis performed on the tasks completion times and error rate show that there was significant statistical difference between the dual tone multi-frequency input interface and the voice input interface. The interfaces were easy to learn, understand and use. Properly designed user interfaces that meet the experience and capabilities of low-literacy users in rural areas will improve usability and users‟ experiences. Adaptation of interfaces to users‟ culture and preferences will enhance information services accessibility among different user groups in different regions. This will promote technology acceptance in rural communities for socio-economic benefits. The user interfaces presented in this study can be adapted to different cultures to provide similar services for marginalised communities in developing countries
- Full Text:
- Date Issued: 2010
- Authors: Edim, Azom Emmanuel
- Date: 2010
- Subjects: Rural development projects -- South Africa -- Eastern Cape , Poverty -- South Africa -- Eastern Cape , Cell phone systems -- South Africa -- Eastern Cape , User interfaces (Computer systems) , Human-computer interaction , Community development -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Computer Science)
- Identifier: vital:11392 , http://hdl.handle.net/10353/519 , Rural development projects -- South Africa -- Eastern Cape , Poverty -- South Africa -- Eastern Cape , Cell phone systems -- South Africa -- Eastern Cape , User interfaces (Computer systems) , Human-computer interaction , Community development -- South Africa -- Eastern Cape
- Description: Second economy people in developing countries are people living in communities that are underserved in terms of basic amenities and social services. Due to literacy challenges and user accessibility problems in rural communities, it is often difficult to design user interfaces that conform to the capabilities and cultural experiences of low-literacy rural community users. Rural community users are technologically illiterate and lack the knowledge of the potential of information and communication technologies. In order to embrace new technology, users will need to perceive the user interface and application as useful and easy to interact with. This requires proper understanding of the users and their socio-cultural environment. This will enable the interfaces and interactions to conform to their behaviours, motivations as well as cultural experiences and preferences and thus enhance usability and user experience. Mobile phones have the potential to increase access to information and provide a platform for economic development in rural communities. Rural communities have economic potential in terms of agriculture and micro-enterprises. Information technology can be used to enhance socio-economic activities and improve rural livelihood. We conducted a study to design user interfaces for a mobile commerce application for micro-entrepreneurs in a rural community in South Africa. The aim of the study was to design mobile interfaces and interaction techniques that are easy to use and meet the cultural preferences and experiences of users who have little to no previous experience of mobile commerce technology. And also to explore the potentials of information technologies rural community users, and bring mobile added value services to rural micro-entrepreneurs. We applied a user-centred design approach in Dwesa community and used qualitative and quantitative research methods to collect data for the design of the user interfaces (graphic user interface and voice user interface) and mobile commerce application. We identified and used several interface elements to design and finally evaluate the graphical user interface. The statistics analysis of the evaluation results show that the users in the community have positive perception of the usefulness of the application, the ease of use and intention to use the application. Community users with no prior experience with this technology were able to learn and understand the interface, recorded minimum errors and a high level of v precision during task performance when they interacted with the shop-owner graphic user interface. The voice user interface designed in this study consists of two flavours (dual tone multi-frequency input and voice input) for rural users. The evaluation results show that community users recorded higher tasks successes and minimum errors with the dual tone multi-frequency input interface than the voice only input interface. Also, a higher percentage of users prefer the dual tone multi-frequency input interface. The t-Test statistical analysis performed on the tasks completion times and error rate show that there was significant statistical difference between the dual tone multi-frequency input interface and the voice input interface. The interfaces were easy to learn, understand and use. Properly designed user interfaces that meet the experience and capabilities of low-literacy users in rural areas will improve usability and users‟ experiences. Adaptation of interfaces to users‟ culture and preferences will enhance information services accessibility among different user groups in different regions. This will promote technology acceptance in rural communities for socio-economic benefits. The user interfaces presented in this study can be adapted to different cultures to provide similar services for marginalised communities in developing countries
- Full Text:
- Date Issued: 2010
The development and evaluation of gaze selection techniques
- Authors: Van Tonder, Martin Stephen
- Date: 2009
- Subjects: Human-computer interaction , User interfaces (Computer systems) , Gaze
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10469 , http://hdl.handle.net/10948/882 , Human-computer interaction , User interfaces (Computer systems) , Gaze
- Description: Eye gaze interaction enables users to interact with computers using their eyes. A wide variety of eye gaze interaction techniques have been developed to support this type of interaction. Gaze selection techniques, a class of eye gaze interaction techniques which support target selection, are the subject of this research. Researchers developing these techniques face a number of challenges. The most significant challenge is the limited accuracy of eye tracking equipment (due to the properties of the human eye). The design of gaze selection techniques is dominated by this constraint. Despite decades of research, existing techniques are still significantly less accurate than the mouse. A recently developed technique, EyePoint, represents the state of the art in gaze selection techniques. EyePoint combines gaze input with keyboard input. Evaluation results for this technique are encouraging, but accuracy is still a concern. Early trigger errors, resulting from users triggering a selection before looking at the intended target, were found to be the most commonly occurring errors for this technique. The primary goal of this research was to improve the usability of gaze selection techniques. In order to achieve this goal, novel gaze selection techniques were developed. New techniques were developed by combining elements of existing techniques in novel ways. Seven novel gaze selection techniques were developed. Three of these techniques were selected for evaluation. A software framework was developed for implementing and evaluating gaze selection techniques. This framework was used to implement the gaze selection techniques developed during this research. Implementing and evaluating all of the techniques using a common framework ensured consistency when comparing the techniques. The novel techniques which were developed were evaluated against EyePoint and the mouse using the framework. The three novel techniques evaluated were named TargetPoint, StaggerPoint and ScanPoint. TargetPoint combines motor space expansion with a visual feedback highlight whereas the StaggerPoint and TargetPoint designs explore novel approaches to target selection disambiguation. A usability evaluation of the three novel techniques alongside EyePoint and the mouse revealed some interesting trends. TargetPoint was found to be more usable and accurate than EyePoint. This novel technique also proved more popular with test participants. One aspect of TargetPoint which proved particularly popular was the visual feedback highlight, a feature which was found to be a more effective method of combating early trigger errors than existing approaches. StaggerPoint was more efficient than EyePoint, but was less effective and satisfying. ScanPoint was the least popular technique. The benefits of providing a visual feedback highlight and test participants' positive views thereof contradict views expressed in existing research regarding the usability of visual feedback. These results have implications for the design of future gaze selection techniques. A set of design principles was developed for designing new gaze selection techniques. The designers of gaze selection techniques can benefit from these design principles by applying them to their techniques
- Full Text:
- Date Issued: 2009
- Authors: Van Tonder, Martin Stephen
- Date: 2009
- Subjects: Human-computer interaction , User interfaces (Computer systems) , Gaze
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10469 , http://hdl.handle.net/10948/882 , Human-computer interaction , User interfaces (Computer systems) , Gaze
- Description: Eye gaze interaction enables users to interact with computers using their eyes. A wide variety of eye gaze interaction techniques have been developed to support this type of interaction. Gaze selection techniques, a class of eye gaze interaction techniques which support target selection, are the subject of this research. Researchers developing these techniques face a number of challenges. The most significant challenge is the limited accuracy of eye tracking equipment (due to the properties of the human eye). The design of gaze selection techniques is dominated by this constraint. Despite decades of research, existing techniques are still significantly less accurate than the mouse. A recently developed technique, EyePoint, represents the state of the art in gaze selection techniques. EyePoint combines gaze input with keyboard input. Evaluation results for this technique are encouraging, but accuracy is still a concern. Early trigger errors, resulting from users triggering a selection before looking at the intended target, were found to be the most commonly occurring errors for this technique. The primary goal of this research was to improve the usability of gaze selection techniques. In order to achieve this goal, novel gaze selection techniques were developed. New techniques were developed by combining elements of existing techniques in novel ways. Seven novel gaze selection techniques were developed. Three of these techniques were selected for evaluation. A software framework was developed for implementing and evaluating gaze selection techniques. This framework was used to implement the gaze selection techniques developed during this research. Implementing and evaluating all of the techniques using a common framework ensured consistency when comparing the techniques. The novel techniques which were developed were evaluated against EyePoint and the mouse using the framework. The three novel techniques evaluated were named TargetPoint, StaggerPoint and ScanPoint. TargetPoint combines motor space expansion with a visual feedback highlight whereas the StaggerPoint and TargetPoint designs explore novel approaches to target selection disambiguation. A usability evaluation of the three novel techniques alongside EyePoint and the mouse revealed some interesting trends. TargetPoint was found to be more usable and accurate than EyePoint. This novel technique also proved more popular with test participants. One aspect of TargetPoint which proved particularly popular was the visual feedback highlight, a feature which was found to be a more effective method of combating early trigger errors than existing approaches. StaggerPoint was more efficient than EyePoint, but was less effective and satisfying. ScanPoint was the least popular technique. The benefits of providing a visual feedback highlight and test participants' positive views thereof contradict views expressed in existing research regarding the usability of visual feedback. These results have implications for the design of future gaze selection techniques. A set of design principles was developed for designing new gaze selection techniques. The designers of gaze selection techniques can benefit from these design principles by applying them to their techniques
- Full Text:
- Date Issued: 2009
An intelligent user interface model for contact centre operations
- Authors: Singh, Akash
- Date: 2007
- Subjects: User interfaces (Computer systems) , Human-computer interaction , Mobile computing , Customer services -- Management , Call centers -- Customer services
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10475 , http://hdl.handle.net/10948/d1011399 , User interfaces (Computer systems) , Human-computer interaction , Mobile computing , Customer services -- Management , Call centers -- Customer services
- Description: Contact Centres (CCs) are at the forefront of interaction between an organisation and its customers. Currently, 17 percent of all inbound calls are not resolved on the first call by the first agent attending to that call. This is due to the inability of the contact centre agents (CCAs) to diagnose customer queries and find adequate solutions in an effective and efficient manner. The aim of this research is to develop an intelligent user interface (IUI) model to support and improve CC operations. A literature review of existing IUI architectures, modelbased design and existing CC software together with a field study of CCs has resulted in the design of an IUI model for CCs. The proposed IUI model is described in terms of its architecture, component-level design and interface design. An IUI prototype has been developed as a proof of concept of the proposed IUI model. The IUI prototype was evaluated in order to determine to what extent it supports problem identification and query resolution. User testing, incorporating the use of eye tracking and a post-test questionnaire, was used in order to determine the usability and usefulness of the prototype. The results of this evaluation show that the users were highly satisfied with the task support and query resolution assistance provided by the IUI prototype. This research resulted in the design of an IUI model for the domain of CCs. This model can be used to assist the development of CC applications incorporating IUIs. Use of the proposed IUI model is expected to support and enhance the effectiveness and efficiency of CC operations. Further research is needed to conduct a longitudinal study to determine the impact of IUIs in the CC domain.
- Full Text:
- Date Issued: 2007
- Authors: Singh, Akash
- Date: 2007
- Subjects: User interfaces (Computer systems) , Human-computer interaction , Mobile computing , Customer services -- Management , Call centers -- Customer services
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10475 , http://hdl.handle.net/10948/d1011399 , User interfaces (Computer systems) , Human-computer interaction , Mobile computing , Customer services -- Management , Call centers -- Customer services
- Description: Contact Centres (CCs) are at the forefront of interaction between an organisation and its customers. Currently, 17 percent of all inbound calls are not resolved on the first call by the first agent attending to that call. This is due to the inability of the contact centre agents (CCAs) to diagnose customer queries and find adequate solutions in an effective and efficient manner. The aim of this research is to develop an intelligent user interface (IUI) model to support and improve CC operations. A literature review of existing IUI architectures, modelbased design and existing CC software together with a field study of CCs has resulted in the design of an IUI model for CCs. The proposed IUI model is described in terms of its architecture, component-level design and interface design. An IUI prototype has been developed as a proof of concept of the proposed IUI model. The IUI prototype was evaluated in order to determine to what extent it supports problem identification and query resolution. User testing, incorporating the use of eye tracking and a post-test questionnaire, was used in order to determine the usability and usefulness of the prototype. The results of this evaluation show that the users were highly satisfied with the task support and query resolution assistance provided by the IUI prototype. This research resulted in the design of an IUI model for the domain of CCs. This model can be used to assist the development of CC applications incorporating IUIs. Use of the proposed IUI model is expected to support and enhance the effectiveness and efficiency of CC operations. Further research is needed to conduct a longitudinal study to determine the impact of IUIs in the CC domain.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »