Synthesis and evaluation of PGM-selective ligands
- Authors: Gxoyiya, Babalwa Siliziwe Blossom
- Date: 2013-05-28
- Subjects: Platinum group , Ligands , Ligands -- Evaluation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4450 , http://hdl.handle.net/10962/d1007849 , Platinum group , Ligands , Ligands -- Evaluation
- Description: A series of polydentate POM-selective, sulfur-containing amide ligands have been synthesized from ro-dibromoalkanes and mercaptoacetanilide, The resulting 3,6- dithiaoctanediamides and 3,7-dithianonanediamides, some of which contain a polymerisable group, were all characterized by high-resolution MS, IR, I Hand I3C NMR spectroscopic methods. Various approaches to the polymerisable ligands were explored, the most efficient proving to be the incorporation of an allyl ether moiety in the mercaptoacetanilide. The corresponding Pd(U) and Pt(II) complexes were also prepared from the metal chloride salts and characterized by elemental analysis and spectroscopic methods. The NMR data indicates that both the cis- and transcomplexes were formed, while the IR data indicates cis- coordination of the chlorine . ligands. Molecularly imprinted polymers (MIP's), prepared using platinum(II) mercaptoacetanilide and 3,6-dithiadiamide complexes, showed high selectivity for , , palladium(II) [in the presence of Pt(II), CoCII), Cu(II) and Ni(II)] as determined by . ICP-MS analysis. The more kinetically inert Pt(II) ions however, slowly displaced Pd(II), confirming the Pt(II) selectivity of the MIP's. Solvent extraction studies were conducted to explore the selectivity of the 3,6- dithiaoctanediamides and 3,7-dithianonanediamides for Pd(U) over CoCII), Cu(U) and Ni(II). The ICP-MS data indicate that, in general, equilibration was achieved within ten minutes and that the longer-chain amides were less selective than the shorter-chain analogues. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
The design and synthesis of multidentate N-heterocyclic carbenes as metathesis catalyst ligands
- Authors: Truscott, Byron John
- Date: 2011
- Subjects: Carbenes (Methylene compounds) , Heterocyclic compounds , Ligands , Ligands -- Design , Metathesis (Chemistry) , Catalysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4304 , http://hdl.handle.net/10962/d1004962 , Carbenes (Methylene compounds) , Heterocyclic compounds , Ligands , Ligands -- Design , Metathesis (Chemistry) , Catalysis
- Description: This study has focused on the design and preparation of bi– and tridentate N–Heterocyclic Carbene (NHC) ligands in order to investigate the effect of a multidentate approach to the formation, stability and catalytic activity of coordination complexes. Chapters 1 – 3 provide background information of relevant catalysis, carbene and coordination chemistry, followed by previous work performed within our research group. In Chapter 4 attention is given to the synthetic aspects of the research conducted, comprising two distinct approaches to the preparation of unsymmetrical saturated and unsaturated NHCs. Firstly, an investigation of the saturated NHC ligands yielded three novel, unsymmetrical pro–ligands, viz., two halopropyl imidazolinium salts and a bidentate hydroxypropyl imidazolinium salt. Secondly, eight imidazolium salts have been generated, including a hydroxypropyl analogue and novel decyl and tridentate malonyl derivatives. These compounds were prepared using microwave–assisted methodology for the alkylation of N– mesitylimidazole – an approach that drastically reduced reaction times (from 8 hours – 7 days to ca. 0.5 – 2 hours) and facilitated isolation of the imidazolium salts. Many of the compounds prepared in this study are novel and were fully characterized using HRMS and 1– and 2–D NMR analysis. Coordination studies using a selection of the prepared pro–ligands afforded an alkoxy–NHC silver derivative and four novel Ru–complexes, viz., Grubbs II–type Ru–complexes containing:– chloropropyl imidazolinylidene; propenyl imidazolylidene; and bidentate alkoxypropyl imidazolylidene ligands. Furthermore, a well–defined benzyl mesitylimidazolylidene Ru–complex has been isolated, which exhibited good stability in air. DFT–level geometry–optimization studies, using the Accelrys DMol3 package have given valuable insights into the likely geometries of the prepared and putative catalysts.
- Full Text:
- Date Issued: 2011
Reactivity of Rhenium (iii) and Rhenium (V) with multidentate NN-and no-donor ligands
- Authors: Yumata, Nonzaliseko Christine
- Date: 2010
- Subjects: Rhenium , Ligands
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10373 , http://hdl.handle.net/10948/1085 , Rhenium , Ligands
- Description: The reaction of the potentially tridentate Schiff-base chelate Hhaep [Haep = N’-(1- (2-hydroxyphenyl)ethylidene)benzohydrazide] with [ReCl3(benzil)(PPh3)] and trans-[ReOCl3(PPh3)2] produced the neutral oxorhenium(V) complexes cis- [ReOCl2(mep)] [Hmep = 2-(1-iminoethyl)phenol] and cis-[ReOCI2(meb)(PPh3)] [Hmeb = N’-(propan-2-ylidene)benzohydrazide] in ethanol and acetone respectively. In both reactions the Hhaep molecule cleaves to give different coordinated bidentate NO-donor chelates coordinated to the rhenium(V) centers. The X-ray studies reveal that mep is present as a bidentate, monoanionic Schiffbase coordinating through the neutral imino nitrogen and the deprotonated phenolate oxygen in cis-[ReOCl2(mep)]. The bond distances and angles in cis- [ReOCI2(meb)(PPh3)] confirm that meb coordinates to the metal in the enolate form. The distorted octahedral complex fac-[ReCl3(dpa)(PPh3)] was prepared by the reaction of trans-[ReCl3(MeCN)(PPh3)2] with a twofold molar excess of dpa in acetonitrile under a nitrogen atmosphere. The compound dpa.HCl.2H2O was obtained as a by-product in the reaction of dpa with trans-[ReCI3(MeCN)(PPh3)2] in acetonitrile. The reaction of trans-[ReCl3(MeCN)(PPh3)2] with a twofold molar excess of 6- amino-3-methyl-1-phenyl-4-azahept-2-ene-1-one (Hamp) in acetonitrile led to the isolation of cis-[ReCl2(bat)(PPh3)2]. On complexation to the metal center Hamp decomposed to give the coordinated benzoylacetone (bat). Bat is present as a monoanionic bidentate chelate. The complexes [ReVOCI(had)] and [ReIVCl(had)(PPh3)](ReO4) were prepared from the reaction of trans-[ReCl3(MeCN)(PPh3)2] with N,N-bis((2-hydroxybenzyl)-2- aminoethyl)dimethylamine (H2had) in ethanol under various reaction conditions. The treatment of [ReCl3(benzil)(PPh3)] with 2-[((2- pyridinylmethyl)amino)methyl]phenol (Hham) in a 2:1 molar ratio in acetonitrile led to the isolation of the hydrogen-bonded dimer [ReOCl2(ham)]2. The distorted octahedral complex [ReOCl(hap)] [H2hap = N,N-bis(2- hydroxybenzyl)aminomethylpyridine] was prepared from the reaction of trans- [ReCl3(MeCN)(PPh3)2] with a twofold molar excess of H2hap in acetonitrile. The X-ray crystal structure analysis shows that the chloride is coordinated trans to the tripodal tertiary amino nitrogen, with a phenolate oxygen trans to the oxo oxygen.
- Full Text:
- Date Issued: 2010
Rhenium (I) and (V) complexes with potentially mulidentate ligands containing the Amino group
- Authors: Booysen, Irvin Noel
- Date: 2009
- Subjects: Rhenium , Ligands
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10386 , http://hdl.handle.net/10948/1270 , Rhenium , Ligands
- Description: The complex trans-[Re(dab)Cl3(PPh3)2] (H2dab = 1,2-diaminobenzene) was prepared from the reaction of trans-[ReOCl3(PPh3)2] with H2dab in ethanol. The ligand dab is coordinated to the rhenium(V) centre through a dianionic imido nitrogen only in a distorted octahedral coordination geometry around the metal ion. The complex trans- [Re(ada)Cl3(PPh3)2] (H2ada = 2-aminodiphenylamine) was prepared from the reaction of trans-[ReOCl3(PPh3)2] with H2ada in acetonitrile. The ligand ada is coordinated to the rhenium(V) centre through a dianionic imido nitrogen only, in a distorted octahedral coordination geometry around the metal ion. The ‘2 + 1’ complex fac- [Re(CO)3(Hamp)(amp)] (Hamp = 2-aminophenol) was isolated from the reaction of a two molar ratio of Hamp with [Re(CO)5Br] in toluene. The reaction of a 1:1 molar ratio of [Re(CO)5Br] and H2ada led to the isolation of the Re(I) complex, fac- [Re(CO)3Br(H2ada)]. The reaction of equimolar quantities of cis-[ReO2I(PPh3)2] with 5,6-diamino-1,3- dimethyluracil (H2ddd) in acetonitrile led to the formation of [Re(ddd)(Hddd)I(PPh3)2](ReO4). The X-ray crystal structure shows that the ligand ddd is coordinated monodentately through the doubly deprotonated amino nitrogen and is therefore present as an imide. The chelate Hddd is coordinated bidentately via the neutral amino nitrogen, which is coordinated trans to the imido nitrogen, and the singly deprotonated amido nitrogen, trans to the iodide. The reaction of trans-[ReOCl3(PPh3)2] with N-(2-aminobenzylidene)-5-amino-1,3-dimethyl uracil (H3dua) in ethanol gave a mixed crystal which contains both the neutral oxorhenium(V) complex [ReOCl(Hdua)] and the imido rhenium(V) [Re(dua)Cl2(PPh3)] in an equimolar ratio in the asymmetric unit. The reaction of equimolar quantities of [NH4(ReO4)] with H2ddd in methanol under reflux led to the isolation of [C12H12N6O4] as only product. The [ReO4]- anion is therefore instrumental in the formation of [C12H12N6O4], and since the product contains no rhenium in any oxidation state, the conclusion is that [ReO4]- catalyses the oxidative deamination Abstract I.N. Booysen Nelson Mandela Metropolitan University vii of H2ddd. The X-ray crystal structure consists of two centrosymmetric, tricyclic rings, comprising a central pyrazine ring and two terminal pyrimidine rings. The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br]. With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2- hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] was obtained. The reaction of a twofold molar excess of H2apb (2-(2-aminophenyl)-1-benzimidazole) with trans-[ReO2(py)4]Cl in ethanol gave the green product of formulation [ReO(Hapb)(apb)] in good yield. The rhenium atom lies in a distorted trigonalbipyramidal environment. The two imidazole N(2) atoms lie in the apical positions trans to each other, with the oxo-oxygen and two amido N(1) atoms in the trigonal plane. A new nitrosylrhenium(II) complex salt, [Re(NO)BrL2(PPh3)2](ReO4) (H2L2 = 2-amino-5- (triphenylphosphino)phenol), is the first example of a complex containing the triphenylphosphonium-amidophenolate ligand L2, formed by the nucleophilic attack of a PPh3 on a coordinated amidophenolate ring. The complex salt trans-[Re(mps)Cl(PPh3)2](ReO4) (H3mps = N-(2-amino-3- methylphenyl)salicylideneimine) was prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H3mps. The X-ray crystal structure shows that the trianionic ligand mps acts as a tridentate chelate via the doubly deprotonated amino nitrogen (an imide), the neutral imino nitrogen and the deprotonated phenolic oxygen. The six-coordinated complex cis-[Re(mps)Cl2(PPh3)2] was prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H3mps in benzene. The X-ray crystal structure show that the mps ligand coordinates as a tridentate chelate via the doubly deprotonated 2-amino nitrogen, the neutral imino nitrogen and the phenolate oxygen. The imide and phenolate oxygen coordinate trans to each other in a distorted octahedral geometry, around the rhenium(V) centre, with the two chlorides in cis positions. A new oxofree rhenium(V) complex salt, [Re(bbd)2](ReO4) ( H2bbd = N-(2- Abstract I.N. Booysen Nelson Mandela Metropolitan University viii aminobenzylidene)benzene-1,2-diamine), has been synthesized and the chelates bbd are coordinated as dianionic tridentate N,N,N-donor diamidoimines. The rhenium(V) ion is centered in a distorted trigonal prism. The rhenium(I) compound fac-[Re(CO)3(daa)].Hpab.H2O (Hpab = N1,N2-(1,2- phenylene)bis(2-aminobenzamide); Hdaa = 2-amino-N-(2-aminophenyl)benzamide) was synthesized from the reaction of [Re(CO)5Br] with a two equivalents of Hpab in toluene. The monoanionic tridentate ligand daa was formed by the rhenium-mediated cleavage of an amido N-C bond of the potentially tetradentate ligand Hpab. Daa is coordinated as a diaminoamide via three nitrogen-donor atoms. The reaction of a twofold molar excess of H2amben (H2amben = N1,N2-bis(2-aminobenzylidene)ethane-1,2-diamine) with trans- [ReOBr3(PPh3)2] gave the oxorhenium(V) cationic complex [ReO(amben)]X (X = Br-, PF6 -). The Re(V) oxo-bridged compound, {μ-O}[ReO(omben)]2.H2O (H2omben = N1,N2- bis(2-hydroxybenzylidene)ethane-1,2-diamine) was isolated from the reaction of a 2:1 molar ratio of H2omben and trans-[ReO2(py)4]Cl in methanol. The seven-coordinate rhenium(III) complex cation [ReIII(dhp)(PPh3)2]+ was isolated as the [ReO4]- salt from the reaction of cis-[ReVO2I(PPh3)2] with 2,6-bis(2- hydroxyphenyliminomethyl)pyridine (H2dhp) in ethanol. In the complex fac- [Re(CO)3(H2dhp)Br], prepared from [Re(CO)5Br] and H2dhp in toluene, the H2dhp ligand acts as a neutral bidentate N,N-donor chelate. An equimolar ratio reaction of 2-aminobenzaldehyde and 2-(2-aminophenyl)-1- benzimidazole in methanol led to 2-(5,6-dihydrobenzimidazolo[1,2-c]-quinazolin-6- yl)aniline. In an attempt to explore the template formation of this class of ligand with rhenium, the reaction of salicylaldehyde and 2-(2-aminophenyl)-1-benzimidazole in ethanol which was followed by the addition of trans-[ReOBr3(PPh3)2] led to the formation of the salt, 6-(2-hydroxyphenyl)-5,6-dihydrobenzimidazolo[1,2-c]quinazolin- 12-ium bromide. The compound 6-(2-methylthiophenyl)-5,6-dihydrobenzimidazolo[1,2- c]quinazolin-12-ium was synthesized via the reaction of 2-aminobenzaldehyde and 2- methylthiobenzaldehyde in methanol.
- Full Text:
- Date Issued: 2009
Studies towards the synthesis of novel tridentate ligands for use in ruthenium metathesis catalysts
- Authors: Millward, Tanya
- Date: 2009
- Subjects: Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4360 , http://hdl.handle.net/10962/d1005025 , Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Description: This work has focussed on the preparation of a variety of tridentate ligands, designed to form ruthenium complexes as potential metathesis catalysts. Various approaches to the tridentate, malonate-tethered imidazolidine system have been investigated, and a promising route to accessing ligands of this type is discussed. A tridentate malonate-tethered pyridine ligand has been successfully prepared and its dithallium salt has been accessed by hydrolysis with thallium carbonate; approaches to a longer-chain analogue have also been investigated. A thallium pyridine-2,6- dicarboxylate ligand has been has been successfully prepared, as have a range of pyridine diamine ligands, with various alkyl and aromatic substituents on the amine donor atoms. Preliminary investigations into the potential of these compounds as ligands for alkylidene ruthenium complexes are reported using molecular modelling techniques. The geometries and steric energies of the ligands and their corresponding complexes have been analysed, and results obtained from two different software packages are compared. Finally, some preliminary complexation studies have been undertaken.
- Full Text:
- Date Issued: 2009
The coordination chemistry of Rhenium(V) with multidentate no-donor ligands
- Authors: Abrahams, Abubak'r
- Date: 2009
- Subjects: Rhenium , Ligands
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10370 , http://hdl.handle.net/10948/912 , Rhenium , Ligands
- Description: The neutral distorted octahedral complexes [ReOCl(L)] {H2L = N,N-bis(2- hydroxybenzyl)-2-(2-aminoethyl)dimethylamine (H2had), N,N-bis(2-hydroxybenzyl) aminomethylpyridine (H2hap); N,N-bis(2-hydroxybenzyl)-2-(2-aminoethyl)pyridine (H2hae)} were prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H2L in ethanol. The X-ray structure determinations of [ReOCl(had)] and [ReOCl(hap)] were performed, and in both complexes the chloride is coordinated trans to the tripodal tertiary amino nitrogen, with a phenolate oxygen trans to the oxo oxygen. Treatment of trans-[ReO2(py)4]I with two equivalents and one equivalent each of H2had in acetone afforded the iodide salts of the oxypyridinium-ammonium zwitterions N1-(2-hydroxybenzyl)-N2,N2- dimethyl-N1-((2-oxypyridinium)-1-methyl)ethane-1,2-diamine [Hhpd]+ and N2,N2- dimethyl-N1-bis((2-oxypyridinium)-1-methyl)ethane-1,2-diamine [dod]+ respectively. In [Hhpd]I, one of the 2-hydroxyphenyl groups of H2had is substituted by an oxypyridinium group, and in [dod]I, both 2-hydroxyphenyl groups are converted. The X-ray crystal structure determination of the starting material H2had, [Hhpd]I and [dod]I reveals trigonal pyramidal geometries around the central amino nitrogen. The complex salt [ReO(bsa)]PF6 (H2bsa=bis(N-methylsalicylicylideneiminopropyl) amine) was prepared from the reaction of cis-[ReO2I(PPh3)2] with H2bsa in toluene. The dianionic pentadentate ligand bsa is coordinated to the ReO3+ moiety via one secondary amino and two imino nitrogens, and two anionic phenolate oxygens. The complex was characterized by spectroscopy and analytical data, and the structure has been determined by single-crystal X-ray diffraction analysis. The complex exhibits a distorted octahedral geometry around the central rhenium(V) ion, with the basal plane being defined by a phenolate oxygen, two imino nitrogens and the secondary amino. ix A. Abrahams Nelson Mandela Metropolitan University The reaction of a two-fold molar excess of the potentially NN-donor ligand 2,2’- dipyridylamine (dpa) with trans-[ReO(OEt)Cl2(PPh3)2] in ethanol led to the isolation of [ReOCl2(OEt)(dpa)]. The X-ray crystal structure shows that the NN-chelated dpa is coordinated in the equatorial plane cis to the oxo and ethoxo groups, which are in trans positions relative to each other. The treatment of trans- [ReOCl3(PPh3)2] with a tenfold molar excess of dpa in ethanol at the refluxing temperature yielded the trans-dioxo complex [ReO2(dpa)2]Cl, but with a twofold molar excess only (μ-O)[{ReOCl2(dpa)}2] was isolated. Repeating the latter reaction with (n-Bu4N)[ReOCl4] as starting material in ethanol at room temperature a dark green product, also with the formulation (μ-O)[{ReOCl2(dpa)}2], was isolated. The reaction of equimolar quantities of bis(pyridin-2-yl)methyl)amine (HBPA) with (n-Bu4N)[ReOCl4] in acetone at room temperature led to the isolation of the sixcoordinate rhenium(V) complex [ReOCl(H2O)(BPA)]Cl. IR, NMR and X-ray crystallographic results indicate that BPA is coordinated as a tridentate uninegative chelate, with deprotonation of the amine nitrogen. The water molecule is coordinated trans to the oxo group, with the Re=O and Re-OH2 bond distances equal to 1.663(9) and 2.21(1) Å respectively. Complexes of the general formula [ReOX2{(C5H4N)CH(O)CH2(C5H4N)}] (X = Cl, I) were prepared by the reactions of trans-[ReOCl3(PPh3)2] and trans- [ReOI2(OEt)(PPh3)2] with cis-1,2-di-(2-pyridyl)ethylene (DPE) in ethanol and benzene in air. Experimental evidence shows that the coordinated DPE ligand has undergone addition of water at the ethylenic carbons, and that the (C5H4N)CH(O)CH2(C5H4N) moiety acts as a uninegative tridentate NON-donor ligand. The X-ray crystal structures of both complexes show a distorted octahedral geometry around the rhenium(V) centre. The treatment of trans-[ReOCl3(PPh3)2] with H2dbd in a 2:1 molar ratio in acetonitrile led to the isolation of the ligand-bridged dimer (μ-dbd)[ReOCl2(PPh3)]2. The X-ray crystal structure of the complex reveals a dinuclear structure in which two rhenium(V) ions are bridged by the dbd ligand. Each rhenium ion is in a x A. Abrahams Nelson Mandela Metropolitan University distorted octahedral geometry. The basal plane is defined by a phosphorus atom of the PPh3 group, two chlorides cis to each other, and a pyridyl nitrogen atom of dbd. The oxo group and alcoholate oxygen of dbd lie in trans axial positions. The complexes cis-[ReOX2(msa)(PPh3)] (X = Cl, Br, I) were prepared from trans- [ReOCl3(PPh3)2], trans-[ReOBr3(PPh3)2] or trans-[ReOI2(OEt)(PPh3)2] with 2-(1- iminoethyl)phenol (Hmsa) in acetonitrile. An X-ray crystallographic study shows that the bonding distances and angles in the comlexes are nearly identical, and that the two halides in each complex are coordinated cis to each other in the equatorial plane cis to the oxo group. The oxo-bridged dinuclear rhenium(V) complex [(μ-O){ReOCl(amp)}2] was prepared by the reaction of trans-[ReOCl3(PPh3)2] and 6-amino-3-methyl-1-phenyl- 4-azahept-2-ene-1-one (Hamp) in acetone. The characterization of the complex by elemental analysis, infrared and 1H NMR spectroscopy and X-ray crystallography shows that amp is coordinated as a monoanionic NNO-donor chelate as an amino-amido ketone. However, the reaction of the similar ligand 7- amino-4,7-dimethyl-5-aza-3-octen-2-one (Hada) with [Re(CO)5Br] produced the product fac-[Re(CO)3Br(Hada)], with Hada coordinated as a neutral NN-donor amino-imino-ketone.
- Full Text:
- Date Issued: 2009
Rhenium(V)-Imido complexes with potentially multidentate ligands containing the amino group
- Authors: Booysen, Irvin Noel
- Date: 2007
- Subjects: Rhenium , Ligands
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10385 , http://hdl.handle.net/10948/479 , Rhenium , Ligands
- Description: The complex trans-[Re(dab)Cl3(PPh3)2] (H2dab=1,2-diaminobenzene) was prepared from the reaction of trans-[ReOCl3(PPh3)2] with H2dab in ethanol. The ligand dab is coordinated to the rhenium(V) centre through a dianionic imido nitrogen only, in a distorted octahedral coordination geometry around the metal ion. The complex trans-[Re(ada)Cl3(PPh3)2] (H2ada=2-aminodiphenylamine) was prepared from the reaction of trans-[ReOCl3(PPh3)2] with H2ada in acetonitrile. The ligand ada is coordinated to the rhenium(V) centre through a dianionic imido nitrogen only, in a distorted octahedral coordination geometry around the metal ion. Surprisingly, the Re-Cl bond length trans to the Re=N bond is shorter than the two equatorial Re-Cl bond lengths. The reaction of equimolar quantities of cis-[ReO2I(PPh3)2] with 5,6-diamino-1,3- dimethyluracil (H2ddd) in acetonitrile led to the formation of [Re(ddd)(Hddd)I(PPh3)2](ReO4). The X-ray crystal structure shows that the ligand ddd is coordinated monodentately through the doubly deprotonated amino nitrogen and is therefore present as an imide. The chelate Hddd is coordinated bidentately via the neutral amino nitrogen, which is coordinated trans to the imido nitrogen, and the singly deprotonated amido nitrogen, trans to the iodide. The reaction of equimolar quantities of [NH4(ReO4)] with H2ddd in methanol under reflux conditions led to the isolation of [C12H12N6O4] as only product. The [ReO4]- ion is therefore instrumental in the formation of [C12H12N6O4], and since the product contains no rhenium in any oxidation state, the conclusion is that [ReO4]- catalyses the oxidative deamination of H2ddd. The X-ray crystal structure consists of two centrosymmetric, tricyclic rings, comprising a central pyrazine ring and two terminal pyrimidine rings. The reaction of a twofold molar excess of H2apb (H2apb=2-(2-aminophenyl)-1Hbenzimidazole) with trans-[ReO2(py)4]Cl in ethanol gave the green product of the formulation [ReO(Hapb)(apb)] in good yield. The rhenium atom lies in a distorted trigonal-bipyramidal environment. The two imidazole N(2) atoms lie in the apical positions trans to each other, with the oxo-oxygen and two amido N(1) atoms in the trigonal plane. The complex has C2-symmetry. The two amino groups are singly deprotonated and provide a negative charge each, so that they are coordinated as amides. The oxo group provides two negative charges. In order to obtain electroneutrality for the rhenium(V) complex, the two coordinated imidazole nitrogens provide one negative charge. The complex salt trans-[Re(mps)Cl(PPh3)2](ReO4) (H3mps=N-(2-amino-3- methylphenyl)salicylideneimine) was prepared by the reaction of trans- [ReOCl3(PPh3)2] with a twofold molar excess of H3mps. The X-ray crystal structure shows that the trianionic ligand mps acts as a tridentate chelate via the doubly deprotonated amino nitrogen (which is present in trans- [Re(mps)Cl(PPh3)2](ReO4) as an imide), the neutral imino nitrogen and the deprotonated phenolic oxygen. The [ReO4]- anion has approximately regular tetrahedral geometry. Two significant hydrogen bonds are formed between two of the perrhenyl oxygens and the water of crystallization. The six-coordinated complex cis-[Re(mps)Cl2(PPh3)2] was prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H3mps in benzene. The Xray crystal structure shows that the mps ligand coordinates as a tridentate chelate via the doubly deprotonated 2-amino nitrogen, the neutral imino nitrogen and the phenolate oxygen. The imide and phenolate oxygen coordinate trans to each other in a distorted octahedral geometry around the rhenium(V) centre, with the two chlorides in cis positions.
- Full Text:
- Date Issued: 2007
Studies towards the development of novel multidentate ligands
- Authors: Magqi, Nceba
- Date: 2007
- Subjects: Density functionals , Ligands , Ligands -- Design , Ligands -- Analysis , Camphor
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4358 , http://hdl.handle.net/10962/d1005023 , Density functionals , Ligands , Ligands -- Design , Ligands -- Analysis , Camphor
- Description: In this study, attention has been given to the design and synthesis of novel multidentate ligands for use in the construction of ruthenium-based metathesis catalysts, and their chelating potential has been explored by computer modelling at the Density Functional Theory (DFT) level. Both Kemp’s triacid (1,3,5-trimethyl-1,3,5-cyclohexanetricarboxylic acid) and D-(+)-camphor have been investigated as molecular scaffolds for the development of such ligands. However selective elaboration of the functional groups in Kemp’s triacid proved difficult to achieve, and the research has focused on the development of camphor derivatives. The synthesis of the camphor-based ligands has involved C-8 functionalisation and ring-opening of the bicyclic system to afford tridentate products. The formation of 9-iodocamphorquinone bis(ethylene ketal) together with the desired product, the 8-iodo isomer, has been confirmed by single crystal X-ray analysis of both compounds. Formation of the 9-iodo analogue has provided new insights into the intramolecular rearrangement of camphor skeleton, and the mechanistic implications have been assessed by coset analysis. Attempts to effect nucleophilic displacement of the 8-halogeno groups by nucleophilic donor moieties proved unexpectedly difficult and, coupled with the susceptibility of the carbonyl groups to nucleophilic attack, has led to the formation of novel tricyclic products, viz., 1,6-dimethyl-3-(2-pyridylamino)-4-oxatricyclo[4.3.0.0[superscript 3,7]]-2-nonanone and 6,7-dimethyl-3-(2-pyridylamino)-4-oxatricyclo -[4.3.0.0[superscript 3,7]]-2-nonanone. However the diphenylphosphine group was successfully introduced at C-8 and oxidative ring-opening of the camphor skeleton has afforded the tridentate ligands, 2-(diphenylphosphinoylmethyl)-1,2-dimethyl-1,3-cyclopentanedicarboxylic acid and 2-(diphenylphosphinoylmethyl)-1,3-bis(hydroxymethyl)1,2-dimethylcyclopentane. One- and two-dimensional NMR and, where appropriate, high-resolution MS methods have been used to characterise the products. Three [superscript 13]C NMR chemical shift prediction programmes, viz., ChemWindow and the MODGRAPH neural network and HOSE (Hierachially Ordered Spherical description of Environment), have been applied to representative compounds to assess their efficacy. While the predicted shifts correlated reasonably well with the experimental data, they proved to be insufficiently accurate to differentiate the isomeric systems examined.
- Full Text:
- Date Issued: 2007
Synthesis and characterization of symmetrical and unsymmetrical ferrocenyl ligands for use in the preparation of Redox Active Ruthenium Alkylidene Complexes
- Authors: Saku, Duduetsang
- Date: 2007
- Subjects: Ferrocene , Ligands , Asymmetric synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10403 , http://hdl.handle.net/10948/701 , Ferrocene , Ligands , Asymmetric synthesis
- Description: Oxidation of a ferrocenyl group in conjugation to another metal centre can alter the electron density at that metal centre and lead to a change in overall reactivity of a complex. Herein, the synthesis and characterization of redox active symmetrical and unsymmetrical ferrocenylalkene derivatives is described. A change in the standard redox potential of ferrocene (465 mV), to more positive potentials in vinylferrocene 1 (478 mV) and 4-phenylvinylferrocene 3 (499 mV), showed how manipulation of a redox potential can be effected on the ferrocenyl moiety by just using conjugation effects. A shift by +13 mV is observed in 1 and this potential more than doubled in 3 (+34 mV). Ferrocenylderived ruthenium alkylidene complexes were also prepared in a cross metathesis of 1 and 3 with Grubbs’ 1 (676.5 mV) to give complexes Ferrocenylidenebis( tricyclohexylphosphine)dichlororuthenium 14, 4-ferrocenylphenylidene-bis (tricyclohexylphosphine)dichlororuthenium 15 respectively. The extent of the electronic communication between the ferrocenyl group and the ruthenium centre was then estimated by looking at the positive or negative redox potential shifts of 14 and 15 as a result of 1 and 3. A large positive potential shift by 180 mV in 14 indicated that there was a strong electronic communication between the two metal centres, while the smaller, yet significant positive potential shift by 89.5 mV in 15 showed 3 to have a lesser effect on the ruthenium centre. Compounds 14 and 15 were tested in a Ring Closing Metathesis (RCM) of diethyldiallylmalonate showed enhanced reactivity.
- Full Text:
- Date Issued: 2007
Cytokine signalling functions of human soluble IgE receptors in peripheral blood mononuclear cells from normal and hyper-allergic individuals and in B-lymphoblastoid and monocytic cell lines
- Authors: Askew, Sandra Lyn
- Date: 2006
- Subjects: Ligands , Cell receptors , Cellular signal transduction
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10305 , http://hdl.handle.net/10948/455 , Ligands , Cell receptors , Cellular signal transduction
- Description: CD23 is a multifunctional receptor/ligand, found in a variety of cell types, such as human peripheral blood mononuclear cells (PBMCs), B-lymphoblastoid cell lines, mast cells and basophils. It is also found on a variety of haematopoietic cell lines. As the low-affinity receptor for immunoglobulin E (IgE), CD23 plays a role in antigen-presentation and macrophage activation. As a surface molecule cleaved from the cell membrane, soluble CD23 (sCD23) can act as an adhesion molecule and a cytokine. Perturbances of such molecular interactions may lead to various diseases such as allergies and other inflammatory diseases. It has been speculated that elevated levels of sCD23 may be used to bind secreted IgE, thus preventing it from binding to membrane CD23 on haematopoietic cells, preventing B cells from being activated into IgE producing cells. Signal transduction by sCD23 is dependent on cell subsets, ligands and co-factors required for its function. sCD23 plays a direct role in inducing tumour necrosis factor alpha (TNFα), interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) and soluble IL-1 receptor from activated human monocytes and PBMCs in vitro. Recombinant forms of 25 and 37 kDa human sCD23 were produced by polymerase chain reaction (PCR)-cloning into pET23a, a bacterial expression vector. The proteins were expressed and refolded, followed by purification by gel filtration chromatography. The purified proteins were biochemically characterized to ensure purity and biological activity, by observing the binding to human IgE both in enzyme-linked immunosorbant assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. ELISA showed KD values of 7.23 x 10-9M and 8.12 x 10-9M for the 25 and 37 kDa proteins, respectively. These values were significantly lower than that of Hibbert et al., (2005). SPR data obtained for the 25 kDa CD23 was not of reliable quality but SPR for the 33kDa sCD23 showed a KD of 1.18 x 10-7M, close to that of Hibbert et al., (2005), J. Exp. Med, 202: 751-760. To test the therapeutic potential of the recombinant molecule, a B-lymphoblastoid cell line (Raji), a pre-monocytic cell line (U937), and PBMCs from normal and hyper-allergic individuals were used. All cells showed no change in production of cytokines. It is essential to investigate further cytokine functions and production implicated by recombinant forms of sCD23, as well as binding of sCD23 to CD21 and CD11b/c, and in vivo IgE regulation before a conclusion can be drawn as to whether recombinant sCD23 is a potential therapeutic target against allergic disease.
- Full Text:
- Date Issued: 2006
Exploratory studies of novel ligand systems
- Authors: Taylor, Steven John
- Date: 1992
- Subjects: Ligands , Coordination compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4315 , http://hdl.handle.net/10962/d1004973 , Ligands , Coordination compounds
- Description: A range of novel ligand systems have been developed in three distinct phases and preliminary studies have been initiated to evaluate their complexation potential. Phase I incorporated the synthesis of single strand ligand systems, which were mainly based on amino acid residues. Techniques have been developed for the attachment of these ligand systems onto, firstly, a styrene monomer, and then later onto a pseudo-styrene linking group, viz. the p-toluoyl group. The linking reactions were based on the formation of amides or esters by the reaction of an acid chloride system with an amine or alcohol. Phase II involved the synthesis of bis-chain ligand systems and their attachment onto the p-toluoyl linking group. A further linking group was also developed at this stage, viz. the xylyl group. In the preparation of phase II ligand systems, use was made of malonic ester and iminodiacetic acid derivatives. Phase III has involved the synthesis of cyclic ligand systems, with skeletons based upon the structures used in phase I and phase II and two crown ether type systems have been prepared.
- Full Text:
- Date Issued: 1992