Contributions of inshore and offshore sources of primary production to the foodweb, and the trophic connectivity between various habitats along a depth-gradient, in Sodwana Bay, Kwazulu-Natal, South Africa
- Authors: Parkinson, Matthew Cameron
- Date: 2013
- Subjects: Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5179 , http://hdl.handle.net/10962/d1001630 , Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Description: Sodwana Bay, situated within the iSimangaliso Wetland Park, is ecologically important as it contains high-latitude corals and the most southerly known population of coelacanths. This thesis utilised stable isotope and lipid analyses to investigate the trophic ecology of the area, in particular, understanding the relative contribution of inshore and offshore primary production to consumers inhabiting intertidal and shallow subtidal, coral reef, deep reef, canyon head and pelagic habitats. Seaweeds, excluding certain species of red seaweeds with highly depleted carbon signatures, and phytoplankton, such as diatoms, were found to be the principal sources of primary production for all consumers. Offshore production was typified by dinoflagellates. Particulate organic matter (POM) was spatio-temporally variable. Three distinct productivity periods related to nutrient cycling were noted with enriched carbon signatures and higher organic matter loads associated with warmer water. Inshore primary production was an important source of carbon to consumers in all habitats with the exception of zooplankton that were more reliant on pelagic primary production. Benthic invertebrates reflected a gradient in the utilisation of inshore production, due to the reduced availability of this source further offshore. Consumers at the furthest sites offshore were found to include a substantial quantity of inshore-derived production in their diets. Fishes, which are more mobile, were found to incorporate a similar proportion of inshore production into their diets regardless of where they were collected from.
- Full Text:
- Date Issued: 2013
- Authors: Parkinson, Matthew Cameron
- Date: 2013
- Subjects: Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5179 , http://hdl.handle.net/10962/d1001630 , Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Description: Sodwana Bay, situated within the iSimangaliso Wetland Park, is ecologically important as it contains high-latitude corals and the most southerly known population of coelacanths. This thesis utilised stable isotope and lipid analyses to investigate the trophic ecology of the area, in particular, understanding the relative contribution of inshore and offshore primary production to consumers inhabiting intertidal and shallow subtidal, coral reef, deep reef, canyon head and pelagic habitats. Seaweeds, excluding certain species of red seaweeds with highly depleted carbon signatures, and phytoplankton, such as diatoms, were found to be the principal sources of primary production for all consumers. Offshore production was typified by dinoflagellates. Particulate organic matter (POM) was spatio-temporally variable. Three distinct productivity periods related to nutrient cycling were noted with enriched carbon signatures and higher organic matter loads associated with warmer water. Inshore primary production was an important source of carbon to consumers in all habitats with the exception of zooplankton that were more reliant on pelagic primary production. Benthic invertebrates reflected a gradient in the utilisation of inshore production, due to the reduced availability of this source further offshore. Consumers at the furthest sites offshore were found to include a substantial quantity of inshore-derived production in their diets. Fishes, which are more mobile, were found to incorporate a similar proportion of inshore production into their diets regardless of where they were collected from.
- Full Text:
- Date Issued: 2013
An investigation of the antimicrobial and antifouling properties of marine algal metabolites
- Authors: Mann, Maryssa Gudrun Ailsa
- Date: 2008 , 2013-07-11
- Subjects: Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3831 , http://hdl.handle.net/10962/d1007465 , Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Description: Prevention of the accumulation of undesirable biological material i.e. biofouling upon a solid surface requires the use of antifouling systems. The solid surface may be a contact lens, an off shore oil rig or a living organism. When chemicals are employed as a mechanism of defense against biofouling, the agents involved are known as antifouling agents. Marine algae must protect themselves from fouling organisms and it is thought that one of the mechanisms used by these organisms is the production of secondary metabolites with an array of biological activities. In vitro studies have shown numerous compounds isolated from marine algae to possess antibacterial, antifungal and antimacrofouling activity. The aim of this study was to evaluate the secondary metabolite extracts of selected Southern African marine macro-algae as a potential source of compounds that inhibit biofilm formation and that could be used as antifouling agents. In this project, marine macro-algae were collected from various sites along the South African coastline. Their extracts were screened for antimicrobial activity against four ubiquitous microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium aurm and Candida albicans. Results of screening assays guided the fractionation of two Rhodophyta, Plocamium corallorhiza and Laurencia flexuosa. The algae were fractionated using silica gel column chromatography and compounds were isolated by semi-preparative normal phase HPLC. Compound characterization was performed using UV, IR and advanced one- and two-dimensional NMR (¹H, ¹³C NMR, COSY, HSQC, HMBC and NOESY) spectroscopy and mass spectrometry. Ten halogenated monoterpenes including four members of the small class of halogenated monoterpene aldehydes were isolated from extracts of P. corallorhiza. The compounds isolated included the known compounds 3,4,6,7-tetrachloro-3,7-dimethyl-1-octene; 4,6-dibromo-1, 1-dichloro-3,7 -dimethyl-2E,7 octadiene; 4,8-d ibromo-1,1,7 -trichloro-3, 7-dimethyl-2,5Eoctadiene;1 ,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1 E,5E-octadiene; 8-bremo-6, 7-dichloro-3,7-dimethyl-octa-2E,4E-dienal; 4-Bromo-8-chloro-3,7-dimethyl-octa-2E,6E-dienal; 4,6- Dibromo-3,7-dimethyl-octa-2E,7-dienal; 2,4-dichloro-1-(2-chlorovinyl)-1-methyl-5-methylidene-cyclohexane and two new metabolites 4,8-chloro-3,7-dimethyl-2Z,4,6Z-octatrien-1-al and Compound 3.47. Methodology was developed for the chemical derivatization and mass spectrometric analysis of the aldehydic compounds, The aldehyde trapping reagent 0-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride was used to derivatize the molecules, stabilizing them and allowing for their complete characterization. From Laurencia flexuosa a new cuparene sesquiterpene 4-bremo-2-(5-hydroxy-1,2,2- trimethylcyclopent-3-enyl)-5-methylphenol was isolated along with two geometric isomers of the vinyl acetylene bromofucin , An halogenated monoterpene 3S*,4R*-1-bromo-3,4,8-trichloro-9-dichloromethyl-1-E,5-E,7-Z-octatriene was also isolated but was suspected to be a contaminant and an investigation into its biological source revealed that it originated from Plocamium suhrii. A third alga, Martensia elegans was extracted based on published reports of antimicrobial compounds in related species. A new a-alkyl malate derivative was isolated and characterized. Selected compounds isolated during the course of the study were employed in preliminary assays that tested their ability to inhibit biofilm formation by Pseudomonas aeruginosa. The halogenated monoterpenes isolated from the Plocamium species were the only active compounds. 3S*,4R*-1-bromo-3,4,S-trichloro-g-dichloromethyl-1-E,5-E,7-octatriene from P. suhrii inhibited biofilm formation through antibacterial activity on planktonic cells but could not prevent biofilm formation when employed as a film on the surface of microtitre plate wells. 1,4,8-tribromo-3,7-dichloro-3,7-dimethyl-1E,5E-octadiene and 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2E,7-octadiene inhibited biofilm formation when applied as a film to the microtitre plate wells but had no significant antibacterial activity. No potential antifouling agents were identified in this project but the antimicrobial activity exhibited by the crude algal extracts was highly encouraging and a number of new research areas have been identified. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2008
- Authors: Mann, Maryssa Gudrun Ailsa
- Date: 2008 , 2013-07-11
- Subjects: Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3831 , http://hdl.handle.net/10962/d1007465 , Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Description: Prevention of the accumulation of undesirable biological material i.e. biofouling upon a solid surface requires the use of antifouling systems. The solid surface may be a contact lens, an off shore oil rig or a living organism. When chemicals are employed as a mechanism of defense against biofouling, the agents involved are known as antifouling agents. Marine algae must protect themselves from fouling organisms and it is thought that one of the mechanisms used by these organisms is the production of secondary metabolites with an array of biological activities. In vitro studies have shown numerous compounds isolated from marine algae to possess antibacterial, antifungal and antimacrofouling activity. The aim of this study was to evaluate the secondary metabolite extracts of selected Southern African marine macro-algae as a potential source of compounds that inhibit biofilm formation and that could be used as antifouling agents. In this project, marine macro-algae were collected from various sites along the South African coastline. Their extracts were screened for antimicrobial activity against four ubiquitous microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium aurm and Candida albicans. Results of screening assays guided the fractionation of two Rhodophyta, Plocamium corallorhiza and Laurencia flexuosa. The algae were fractionated using silica gel column chromatography and compounds were isolated by semi-preparative normal phase HPLC. Compound characterization was performed using UV, IR and advanced one- and two-dimensional NMR (¹H, ¹³C NMR, COSY, HSQC, HMBC and NOESY) spectroscopy and mass spectrometry. Ten halogenated monoterpenes including four members of the small class of halogenated monoterpene aldehydes were isolated from extracts of P. corallorhiza. The compounds isolated included the known compounds 3,4,6,7-tetrachloro-3,7-dimethyl-1-octene; 4,6-dibromo-1, 1-dichloro-3,7 -dimethyl-2E,7 octadiene; 4,8-d ibromo-1,1,7 -trichloro-3, 7-dimethyl-2,5Eoctadiene;1 ,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1 E,5E-octadiene; 8-bremo-6, 7-dichloro-3,7-dimethyl-octa-2E,4E-dienal; 4-Bromo-8-chloro-3,7-dimethyl-octa-2E,6E-dienal; 4,6- Dibromo-3,7-dimethyl-octa-2E,7-dienal; 2,4-dichloro-1-(2-chlorovinyl)-1-methyl-5-methylidene-cyclohexane and two new metabolites 4,8-chloro-3,7-dimethyl-2Z,4,6Z-octatrien-1-al and Compound 3.47. Methodology was developed for the chemical derivatization and mass spectrometric analysis of the aldehydic compounds, The aldehyde trapping reagent 0-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride was used to derivatize the molecules, stabilizing them and allowing for their complete characterization. From Laurencia flexuosa a new cuparene sesquiterpene 4-bremo-2-(5-hydroxy-1,2,2- trimethylcyclopent-3-enyl)-5-methylphenol was isolated along with two geometric isomers of the vinyl acetylene bromofucin , An halogenated monoterpene 3S*,4R*-1-bromo-3,4,8-trichloro-9-dichloromethyl-1-E,5-E,7-Z-octatriene was also isolated but was suspected to be a contaminant and an investigation into its biological source revealed that it originated from Plocamium suhrii. A third alga, Martensia elegans was extracted based on published reports of antimicrobial compounds in related species. A new a-alkyl malate derivative was isolated and characterized. Selected compounds isolated during the course of the study were employed in preliminary assays that tested their ability to inhibit biofilm formation by Pseudomonas aeruginosa. The halogenated monoterpenes isolated from the Plocamium species were the only active compounds. 3S*,4R*-1-bromo-3,4,S-trichloro-g-dichloromethyl-1-E,5-E,7-octatriene from P. suhrii inhibited biofilm formation through antibacterial activity on planktonic cells but could not prevent biofilm formation when employed as a film on the surface of microtitre plate wells. 1,4,8-tribromo-3,7-dichloro-3,7-dimethyl-1E,5E-octadiene and 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2E,7-octadiene inhibited biofilm formation when applied as a film to the microtitre plate wells but had no significant antibacterial activity. No potential antifouling agents were identified in this project but the antimicrobial activity exhibited by the crude algal extracts was highly encouraging and a number of new research areas have been identified. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2008
Evaluation and application of electroanalysis for the determination of antioxidants
- Authors: Ragubeer, Nasheen
- Date: 2007
- Subjects: Antioxidants , Nervous system -- Degeneration , Electrochemical analysis , Marine algae , Natural products , Marine metabolites , Sargassum , Legumes , Nuclear magnetic resonance
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3922 , http://hdl.handle.net/10962/d1003981 , Antioxidants , Nervous system -- Degeneration , Electrochemical analysis , Marine algae , Natural products , Marine metabolites , Sargassum , Legumes , Nuclear magnetic resonance
- Description: The role of antioxidants in the prevention of neurodegenerative diseases has been well documented. The use of synthetic antioxidants has decreased due to the ssociation of these compounds with certain cancers. Thus, the search for novel natural antioxidants has gained much focus in research. Most common methods of determining antioxidant capacity are the radical generated assays and biological assays such as lipid peroxidation and the nitroblue tetrazolium assay. Electrochemical methods have been proposed for the determination of bio-active compounds such as antioxidants. The electrochemical methods of cyclic voltammetry and square wave voltammetry were evaluated for the determination of antioxidant capacity initially examining known antioxidants and then using plant extracts of Sutherlandia frutescens as a case study. The antioxidant properties determined by electrochemical methods were validated utilising the non-biological methods of the DPPH, TEAC, ferrozine and FC assay and biological pharmacological methods. The results indicated that Sutherlandia frutescens contains potent antioxidant compounds that are able to reduce lipid peroxidation. The electrochemical techniques of square wave voltammetry and cyclic voltammetry were applied for the screening of a large number of extracts of various algae for the detection of antioxidant compounds. The results indicated that electrochemistry can be used as a preliminary method for the rapid screening of a large number of crude samples for antioxidant compounds. Electrochemical methods were also evaluated as a method for guiding the isolation and purification of antioxidant metabolites in Sargassum elegans. Solvent partitioning and fractionation of the marine alga allowed for the purification of antioxidant compounds. At each step of purification electrochemical methods were utilized to determine which fractions contained the more potent antioxidant compounds and thus guide further purification. The purified antioxidant compounds were elucidated using NMR to determine the structure of the antioxidant compounds.
- Full Text:
- Date Issued: 2007
- Authors: Ragubeer, Nasheen
- Date: 2007
- Subjects: Antioxidants , Nervous system -- Degeneration , Electrochemical analysis , Marine algae , Natural products , Marine metabolites , Sargassum , Legumes , Nuclear magnetic resonance
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3922 , http://hdl.handle.net/10962/d1003981 , Antioxidants , Nervous system -- Degeneration , Electrochemical analysis , Marine algae , Natural products , Marine metabolites , Sargassum , Legumes , Nuclear magnetic resonance
- Description: The role of antioxidants in the prevention of neurodegenerative diseases has been well documented. The use of synthetic antioxidants has decreased due to the ssociation of these compounds with certain cancers. Thus, the search for novel natural antioxidants has gained much focus in research. Most common methods of determining antioxidant capacity are the radical generated assays and biological assays such as lipid peroxidation and the nitroblue tetrazolium assay. Electrochemical methods have been proposed for the determination of bio-active compounds such as antioxidants. The electrochemical methods of cyclic voltammetry and square wave voltammetry were evaluated for the determination of antioxidant capacity initially examining known antioxidants and then using plant extracts of Sutherlandia frutescens as a case study. The antioxidant properties determined by electrochemical methods were validated utilising the non-biological methods of the DPPH, TEAC, ferrozine and FC assay and biological pharmacological methods. The results indicated that Sutherlandia frutescens contains potent antioxidant compounds that are able to reduce lipid peroxidation. The electrochemical techniques of square wave voltammetry and cyclic voltammetry were applied for the screening of a large number of extracts of various algae for the detection of antioxidant compounds. The results indicated that electrochemistry can be used as a preliminary method for the rapid screening of a large number of crude samples for antioxidant compounds. Electrochemical methods were also evaluated as a method for guiding the isolation and purification of antioxidant metabolites in Sargassum elegans. Solvent partitioning and fractionation of the marine alga allowed for the purification of antioxidant compounds. At each step of purification electrochemical methods were utilized to determine which fractions contained the more potent antioxidant compounds and thus guide further purification. The purified antioxidant compounds were elucidated using NMR to determine the structure of the antioxidant compounds.
- Full Text:
- Date Issued: 2007
A study of plocamium corallorhiza secondary metabolites and their biological activity
- Authors: Mkwananzi, Henry Bayanda
- Date: 2005
- Subjects: Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3841 , http://hdl.handle.net/10962/d1007666 , Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Description: Seaweeds of the genus Plocamium are known to produce a variety of halogenated monoterpenes. In addition to their ecological role as feeding deterrents, biological activities reported for these compounds include antibacterial, antialgal, antifungal and anticancer activities. An investigation of the non-polar extracts of the seaweed Plocamium corallorhiza resulted in the isolation of six known halogenated monoterpene compounds, 4-bromo-5-bromomethyl-1-chlorovinyl-2, 5-dichloro-methylcyclohexane (2.68), 1,4,8-tribromo-3 ,7-dichloro-3, 7-dimethyl-1,5-octadiene (2.67), 8-bromo-1 ,3,4,7-tetrachloro-3, 7-dimethyl-1,5-octadiene (2.66), 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2,7-octadiene (2.64), 4,8-dibromo-1,1,7-trichloro-3,7-dimethyl-2,5-octadiene (2.65) and 3,4 ,6,7-tetrachloro-3, 7-dimethyl-1-octene (2.63) as well as eight new compounds, including five halogenated monoterpene aldehydes. The new compounds were identified by 1D and 2D NMR spectroscopic techniques as: 8-Bromo-6,7-dichloro-3,7-dimethyl-octa-2,4-dienal (2.72), 8-Bromo-1,1,2,7-tetrachloro-3,7-dimethyl-octa-3,5-diene (2.70), 4,8-Dichloro-3,7-dimethyl-octa-2,4,6-trienal (2.74), 4-Bromo-8-chloro-3, 7-di methyl-octa-2, 6-dienal (2 76), 8-Bromo-4-chloro-3, 7-dimethyl-octa-2,4 ,6-trienaI (2.75), 4-Bromo-1,3,6,7-tetrachloro-3 ,7-dimethyl-octa-1,4-diene (2.71), 8-Bromo-1,3,4,7-tetrachloro-3,7-dimethyl-octa-1,5-diene (2.69), 4,6-Dibromo-3,7 -dimethyl-octa-2,7-dienal (2.73). All compounds were screened for antimicrobial activity, brine shrimp lethality and cytotoxicity towards oesophageal cancer cells. Compound 2.68 was toxic to brine shrimp larvae at a concentration of 50 μ/mL. It also showed promising activity towards oesophageal cancer cells with an IC₅₀, of 2 μg/mL.
- Full Text:
- Date Issued: 2005
- Authors: Mkwananzi, Henry Bayanda
- Date: 2005
- Subjects: Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3841 , http://hdl.handle.net/10962/d1007666 , Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Description: Seaweeds of the genus Plocamium are known to produce a variety of halogenated monoterpenes. In addition to their ecological role as feeding deterrents, biological activities reported for these compounds include antibacterial, antialgal, antifungal and anticancer activities. An investigation of the non-polar extracts of the seaweed Plocamium corallorhiza resulted in the isolation of six known halogenated monoterpene compounds, 4-bromo-5-bromomethyl-1-chlorovinyl-2, 5-dichloro-methylcyclohexane (2.68), 1,4,8-tribromo-3 ,7-dichloro-3, 7-dimethyl-1,5-octadiene (2.67), 8-bromo-1 ,3,4,7-tetrachloro-3, 7-dimethyl-1,5-octadiene (2.66), 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2,7-octadiene (2.64), 4,8-dibromo-1,1,7-trichloro-3,7-dimethyl-2,5-octadiene (2.65) and 3,4 ,6,7-tetrachloro-3, 7-dimethyl-1-octene (2.63) as well as eight new compounds, including five halogenated monoterpene aldehydes. The new compounds were identified by 1D and 2D NMR spectroscopic techniques as: 8-Bromo-6,7-dichloro-3,7-dimethyl-octa-2,4-dienal (2.72), 8-Bromo-1,1,2,7-tetrachloro-3,7-dimethyl-octa-3,5-diene (2.70), 4,8-Dichloro-3,7-dimethyl-octa-2,4,6-trienal (2.74), 4-Bromo-8-chloro-3, 7-di methyl-octa-2, 6-dienal (2 76), 8-Bromo-4-chloro-3, 7-dimethyl-octa-2,4 ,6-trienaI (2.75), 4-Bromo-1,3,6,7-tetrachloro-3 ,7-dimethyl-octa-1,4-diene (2.71), 8-Bromo-1,3,4,7-tetrachloro-3,7-dimethyl-octa-1,5-diene (2.69), 4,6-Dibromo-3,7 -dimethyl-octa-2,7-dienal (2.73). All compounds were screened for antimicrobial activity, brine shrimp lethality and cytotoxicity towards oesophageal cancer cells. Compound 2.68 was toxic to brine shrimp larvae at a concentration of 50 μ/mL. It also showed promising activity towards oesophageal cancer cells with an IC₅₀, of 2 μg/mL.
- Full Text:
- Date Issued: 2005
Studies on the bioactivities of selected Eastern Cape seaweeds
- Authors: Carter, Anne Margaret
- Date: 1994
- Subjects: Marine algae -- South Africa -- Eastern Cape , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4033 , http://hdl.handle.net/10962/d1004093 , Marine algae -- South Africa -- Eastern Cape , Marine algae
- Description: In studies on the bioactivities of selected eastern Cape seaweeds, a suitable extraction solvent, namely methanol was used. The antimicrobial, antineoplastic and antiviral activities were investigated, and a seasonal comparison of antimicrobial activities as well as a scanning electron microscopic study were included. A number of algae were found to display significantly high antibacterial activities, of these, the two red algae Plocamium corallorhiza and Laurencia glomerata and the two brown algae Zonaria subarticulata and Ecklonia biruncinata showed the most potent broad spectrum antibacterial activity. L.glomerata and E.biruncinata were active against all five test bacteria, but were inactive against the yeast Candida albicans. C.albicans was the most resistant organism tested,~with only Peyssonelia capensis, f-corallorhiza and Ulva rigida inhibiting its growth. Of the 17 seaweeds tested, none showed any clear seasonal changes in antimicrobial activity. The microorganisms however did vary in their susceptibility to treatment. Staphylococcus aureus and the Micrococcus species were the most susceptible to treatment by the algal extracts, with the Gram positive endospore former, Bacillus subtilis and the two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa showing more resistance to treatment. C.albicans however was the most resistant organism. In the antineoplastic studies, the brown algae Z.subarticulata, E.biruncinata and Sargassum heterophyllum showed potent activity against both the normal, LLCMK, and cancerous, mouse melanoma-3S0 cells, reducing cell growth in each case. The green algae showed potent activity against the cancerous cells, lowering growth to 30% that of the normal cells. Normal cell growth was unaffected or was stimulated by the presence of these algal extracts. The red algae showed no antineoplastic activity. Representatives of each of the red, brown and green algae were used in the brine shrimp (Artemia salina) cytotoxicity study. None of the algae showed any toxicity towards the brine shrimp. In the antiviral studies against Polio Type 1, strain L-Sa, a reduction in virus infectivity was used as an indication of the presence of antiviral properties in the seaweeds tested. This was done by comparing the virus titres of algal-treated cells with those of untreated cells. Six of the algae tested displayed antiviral activity, these were the two Rhodophyceae Hypnea spicifera and L.glomerata, the two Phaeophyceae Dictyopteris macrocarpa and Dictyota naevosa, and the two Chlorophyceae U.rigida and Halimeda cuneata. Of these, D.naevosa showed particularly strong activity, recording a log reduction in virus titre of 4.
- Full Text:
- Date Issued: 1994
- Authors: Carter, Anne Margaret
- Date: 1994
- Subjects: Marine algae -- South Africa -- Eastern Cape , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4033 , http://hdl.handle.net/10962/d1004093 , Marine algae -- South Africa -- Eastern Cape , Marine algae
- Description: In studies on the bioactivities of selected eastern Cape seaweeds, a suitable extraction solvent, namely methanol was used. The antimicrobial, antineoplastic and antiviral activities were investigated, and a seasonal comparison of antimicrobial activities as well as a scanning electron microscopic study were included. A number of algae were found to display significantly high antibacterial activities, of these, the two red algae Plocamium corallorhiza and Laurencia glomerata and the two brown algae Zonaria subarticulata and Ecklonia biruncinata showed the most potent broad spectrum antibacterial activity. L.glomerata and E.biruncinata were active against all five test bacteria, but were inactive against the yeast Candida albicans. C.albicans was the most resistant organism tested,~with only Peyssonelia capensis, f-corallorhiza and Ulva rigida inhibiting its growth. Of the 17 seaweeds tested, none showed any clear seasonal changes in antimicrobial activity. The microorganisms however did vary in their susceptibility to treatment. Staphylococcus aureus and the Micrococcus species were the most susceptible to treatment by the algal extracts, with the Gram positive endospore former, Bacillus subtilis and the two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa showing more resistance to treatment. C.albicans however was the most resistant organism. In the antineoplastic studies, the brown algae Z.subarticulata, E.biruncinata and Sargassum heterophyllum showed potent activity against both the normal, LLCMK, and cancerous, mouse melanoma-3S0 cells, reducing cell growth in each case. The green algae showed potent activity against the cancerous cells, lowering growth to 30% that of the normal cells. Normal cell growth was unaffected or was stimulated by the presence of these algal extracts. The red algae showed no antineoplastic activity. Representatives of each of the red, brown and green algae were used in the brine shrimp (Artemia salina) cytotoxicity study. None of the algae showed any toxicity towards the brine shrimp. In the antiviral studies against Polio Type 1, strain L-Sa, a reduction in virus infectivity was used as an indication of the presence of antiviral properties in the seaweeds tested. This was done by comparing the virus titres of algal-treated cells with those of untreated cells. Six of the algae tested displayed antiviral activity, these were the two Rhodophyceae Hypnea spicifera and L.glomerata, the two Phaeophyceae Dictyopteris macrocarpa and Dictyota naevosa, and the two Chlorophyceae U.rigida and Halimeda cuneata. Of these, D.naevosa showed particularly strong activity, recording a log reduction in virus titre of 4.
- Full Text:
- Date Issued: 1994
A study of the marine algal epiphyte, Placophora binderi (J. Agardh) J.Agardh (Ceramiales : Rhodophycophyta)
- Authors: Hartley, Diana Hendy
- Date: 1986
- Subjects: Epiphytes , Marine algae , Codium , Ceramiales
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4177 , http://hdl.handle.net/10962/d1002025 , Epiphytes , Marine algae , Codium , Ceramiales
- Description: Placophora binderi can be described as an "obligate epiphyte" as it does not respond well to any culture conditions and is found growing only on other algae in the natural environment. This habit may have arisen as a response to the best available substrate in a harsh environment (Harlin 1971; Moss 1982). Any nutrient transfer which may occur between Placophora binderi and its basiphyte, usually various species of Codium, is probably by diffusion as rhizoids do not penetrate the basiphyte cells but simply lie between the Codium utricles providing better anchorage. A triphasic life history exists with isomorphic gametophyte, carposporophyte and tetrasporophyte generations. The male and female gametophytes are dioecious. This study confirms Scagel's (1953) observations for the development of the juvenile, mature and reproductive thallus. The juvenile develops as an erect polysiphonous thallus which produces a prostrate lobe as an adventitious branch from the basal segments. This prostrate lobe develops into the dorsiventrally flattened mature thallus. Reproductive structures are produced on erect branches which are initiated at the mature thallus margins. The gametophyte develops on evanescent trichoblasts produced on erect reproductive branches while the tetra sporophyte develops within these erect branches. The female gametophyte has a four-celled carpogonial branch with an auxiliary cell forming after fertilisation from the supporting cell. At the electron microscope level several vesicle types were seen in the reproductive organs. In the male, spermatial vesicles are produced which probably aid in release of the spermatia (Kugrens 1980). These are also visible under the light microscope. In carposporogenesis and tetrasporogenesis, three vesicle types are produced. Striated vesicles appear for a short while during the early stages and probably function as protein stores. Fibrillar vesicles are large and visible under the light microscope. These probably act as carbohydrate storage organelles (Triemer and Vasconcelos 1979; Kugrens and West 1973c; Tripodi 1971). Cored vesicles appear late in sporogenesis and probably aid in adhesion once the spores have settled (Chamberlain and Evans 1973; Wetherbee 1978). Carpospores follow the "serial release" type pattern observed in Polysiphonia (Boney 1978). Tetraspores are released singly via a rupture in the tetrasporangial wall as in Ceramium rubrum (Chamberlain and Evans 1973). Both carpospores and tetraspores germinate in the typical bi-polar Ceramium-type pattern described by Dixon (1973)
- Full Text:
- Date Issued: 1986
- Authors: Hartley, Diana Hendy
- Date: 1986
- Subjects: Epiphytes , Marine algae , Codium , Ceramiales
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4177 , http://hdl.handle.net/10962/d1002025 , Epiphytes , Marine algae , Codium , Ceramiales
- Description: Placophora binderi can be described as an "obligate epiphyte" as it does not respond well to any culture conditions and is found growing only on other algae in the natural environment. This habit may have arisen as a response to the best available substrate in a harsh environment (Harlin 1971; Moss 1982). Any nutrient transfer which may occur between Placophora binderi and its basiphyte, usually various species of Codium, is probably by diffusion as rhizoids do not penetrate the basiphyte cells but simply lie between the Codium utricles providing better anchorage. A triphasic life history exists with isomorphic gametophyte, carposporophyte and tetrasporophyte generations. The male and female gametophytes are dioecious. This study confirms Scagel's (1953) observations for the development of the juvenile, mature and reproductive thallus. The juvenile develops as an erect polysiphonous thallus which produces a prostrate lobe as an adventitious branch from the basal segments. This prostrate lobe develops into the dorsiventrally flattened mature thallus. Reproductive structures are produced on erect branches which are initiated at the mature thallus margins. The gametophyte develops on evanescent trichoblasts produced on erect reproductive branches while the tetra sporophyte develops within these erect branches. The female gametophyte has a four-celled carpogonial branch with an auxiliary cell forming after fertilisation from the supporting cell. At the electron microscope level several vesicle types were seen in the reproductive organs. In the male, spermatial vesicles are produced which probably aid in release of the spermatia (Kugrens 1980). These are also visible under the light microscope. In carposporogenesis and tetrasporogenesis, three vesicle types are produced. Striated vesicles appear for a short while during the early stages and probably function as protein stores. Fibrillar vesicles are large and visible under the light microscope. These probably act as carbohydrate storage organelles (Triemer and Vasconcelos 1979; Kugrens and West 1973c; Tripodi 1971). Cored vesicles appear late in sporogenesis and probably aid in adhesion once the spores have settled (Chamberlain and Evans 1973; Wetherbee 1978). Carpospores follow the "serial release" type pattern observed in Polysiphonia (Boney 1978). Tetraspores are released singly via a rupture in the tetrasporangial wall as in Ceramium rubrum (Chamberlain and Evans 1973). Both carpospores and tetraspores germinate in the typical bi-polar Ceramium-type pattern described by Dixon (1973)
- Full Text:
- Date Issued: 1986
- «
- ‹
- 1
- ›
- »