Molecular study of mycobacterium tuberculosis complex (MTBC) DNA from Port Elizabeth
- Authors: Londiwe, Bhembe Nolwazi
- Date: 2014
- Subjects: Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11281 , http://hdl.handle.net/10353/d1016163 , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis complex (MTBC) is a causative agent of tuberculosis (TB) in humans and animals. The burden of tuberculosis in South Africa is worsened by the concurrent epidemic of HIV. The dynamic of TB epidemics has been investigated and yet little data has been given about the Eastern Cape, particularly Port Elizabeth. The study aimed to investigate the prevalence of drug resistant MTBC and to determine the mutations causing resistance in Port Elizabeth. One hundred and ninety (190) DNA samples isolated from sputum specimen in humans suspected of having TB were amplified using the Seeplex® MTB Nested ACE detection assay. To differentiate Mycobacterium tuberculosis complex (MTBC) members for surveillance purposes a multiplex polymerase chain reaction (PCR) method was done based on genomic regions of differences such as RD1, RD1mic, RD2seal, RD4, RD9 and RD12. Target genes known to confer resistance to first and second-line drugs were amplified and the amplicons sequenced using Big Dye Terminator DNA sequencing kit v3.1 (Applied Biosystems, UK). The patient’s demographic profiles were obtained from the National Health Laboratory Service (NHLS). All hundred and ninety DNA samples tested positive for MTBC using the Seeplex® MTB Nested ACE assay. Results show a high prevalence of extensive drug resistant TB in Port Elizabeth, Eastern Cape Province. One hundred and eighty four (184) DNA isolates were used in the identification of different MTBC species. We ended up working with 184 DNA isolates because we ran out of DNA, and we could not go back to isolate DNA from the affected individuals due to the fact that some patients died, while some have been released to go to their homes. From the 184 DNA isolates 45 (24.5%) isolates were identified to be M. tuberculosis, 94 isolates (51.1%) to be M. bovis BCG and 3 isolates (1.6%) to be M. cannetti. Sequencing results show the position of mutation in each DNA isolate; however in the study we got resistance to MDR to be 100% and 42% pre-XDR while 58% was XDR. These results raise an alarm for the prevalence MDR in MTBC from Port Elizabeth. This is a serious health concern which calls for a need to strategise on the identification of extensive drug resistant TB patients from multi-drug resistant TB patients and ensure monitoring of their treatment.
- Full Text:
- Date Issued: 2014
- Authors: Londiwe, Bhembe Nolwazi
- Date: 2014
- Subjects: Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11281 , http://hdl.handle.net/10353/d1016163 , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis complex (MTBC) is a causative agent of tuberculosis (TB) in humans and animals. The burden of tuberculosis in South Africa is worsened by the concurrent epidemic of HIV. The dynamic of TB epidemics has been investigated and yet little data has been given about the Eastern Cape, particularly Port Elizabeth. The study aimed to investigate the prevalence of drug resistant MTBC and to determine the mutations causing resistance in Port Elizabeth. One hundred and ninety (190) DNA samples isolated from sputum specimen in humans suspected of having TB were amplified using the Seeplex® MTB Nested ACE detection assay. To differentiate Mycobacterium tuberculosis complex (MTBC) members for surveillance purposes a multiplex polymerase chain reaction (PCR) method was done based on genomic regions of differences such as RD1, RD1mic, RD2seal, RD4, RD9 and RD12. Target genes known to confer resistance to first and second-line drugs were amplified and the amplicons sequenced using Big Dye Terminator DNA sequencing kit v3.1 (Applied Biosystems, UK). The patient’s demographic profiles were obtained from the National Health Laboratory Service (NHLS). All hundred and ninety DNA samples tested positive for MTBC using the Seeplex® MTB Nested ACE assay. Results show a high prevalence of extensive drug resistant TB in Port Elizabeth, Eastern Cape Province. One hundred and eighty four (184) DNA isolates were used in the identification of different MTBC species. We ended up working with 184 DNA isolates because we ran out of DNA, and we could not go back to isolate DNA from the affected individuals due to the fact that some patients died, while some have been released to go to their homes. From the 184 DNA isolates 45 (24.5%) isolates were identified to be M. tuberculosis, 94 isolates (51.1%) to be M. bovis BCG and 3 isolates (1.6%) to be M. cannetti. Sequencing results show the position of mutation in each DNA isolate; however in the study we got resistance to MDR to be 100% and 42% pre-XDR while 58% was XDR. These results raise an alarm for the prevalence MDR in MTBC from Port Elizabeth. This is a serious health concern which calls for a need to strategise on the identification of extensive drug resistant TB patients from multi-drug resistant TB patients and ensure monitoring of their treatment.
- Full Text:
- Date Issued: 2014
The measurement of genetic diversity in mycobacterium tuberculosis using random amplified polymorphic DNA profiling
- Authors: Richner, Sharon M
- Date: 2000
- Subjects: Tuberculosis -- History -- 20th century , Tuberculosis -- Africa, Southern , Tuberculosis -- Treatment , Tuberculosis -- Africa , Tuberculosis -- Prevention , Tuberculosis -- Pathogenesis , Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4008 , http://hdl.handle.net/10962/d1004068 , Tuberculosis -- History -- 20th century , Tuberculosis -- Africa, Southern , Tuberculosis -- Treatment , Tuberculosis -- Africa , Tuberculosis -- Prevention , Tuberculosis -- Pathogenesis , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis has caused a resurgence in pulmonary disease in both developed and developing countries in recent times, particularly amongst people infected with the human immunodeficiency virus. The disease has assumed epidemic proportions in South Africa and in the Eastern Cape Province in particular. Of further concern is the isolation of increasing numbers of multiply drug resistant strains. Knowledge of the genetic capability of this organism is essential for the successful development of novel antibiotics and vaccines in an attempt to bring the global pandemic under control. Measurement of the genetic diversity of the organism may significantly contribute to such knowledge, and is of vital importance in monitoring epidemics and in improving treatment and control of the disease. This will entail answering a number of questions related to the degree of genetic diversity amongst strains, to the difference between urban and rural strains, and between drug resistant and drug sensitive strains, and to the geographical distribution of strains. In order to establish such baseline information, RAPD profiling of a large population of isolates from the western and central regions of the Eastern Cape Province was undertaken. A smaller number of drug resistant strains from a small area of KwaZulu-Natal were also analysed, with a view to establishing the genetic difference between strains from the two provinces. Cluster analysis, analysis of molecular variance and Geographical Information Systems technology were used to analyse the RAPD profiles generated. An unexpectedly high degree of genetic diversity was detected in strains from both provinces. While no correlation was seen between genetic diversity and either urban-rural situation or geographical location, a small degree of population structure could be correlated with drug resistance in the Eastern Cape. Furthermore, a significant degree of population structure was detected between strains from the two provinces, although this was still within the parameters for conspecific populations. Future work is necessary to further characterise strains from rural areas of both provinces, as well as from the eastern region of the Eastern Cape in an attempt to pinpoint the cause of the separation of the provincial populations.
- Full Text:
- Date Issued: 2000
- Authors: Richner, Sharon M
- Date: 2000
- Subjects: Tuberculosis -- History -- 20th century , Tuberculosis -- Africa, Southern , Tuberculosis -- Treatment , Tuberculosis -- Africa , Tuberculosis -- Prevention , Tuberculosis -- Pathogenesis , Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4008 , http://hdl.handle.net/10962/d1004068 , Tuberculosis -- History -- 20th century , Tuberculosis -- Africa, Southern , Tuberculosis -- Treatment , Tuberculosis -- Africa , Tuberculosis -- Prevention , Tuberculosis -- Pathogenesis , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis has caused a resurgence in pulmonary disease in both developed and developing countries in recent times, particularly amongst people infected with the human immunodeficiency virus. The disease has assumed epidemic proportions in South Africa and in the Eastern Cape Province in particular. Of further concern is the isolation of increasing numbers of multiply drug resistant strains. Knowledge of the genetic capability of this organism is essential for the successful development of novel antibiotics and vaccines in an attempt to bring the global pandemic under control. Measurement of the genetic diversity of the organism may significantly contribute to such knowledge, and is of vital importance in monitoring epidemics and in improving treatment and control of the disease. This will entail answering a number of questions related to the degree of genetic diversity amongst strains, to the difference between urban and rural strains, and between drug resistant and drug sensitive strains, and to the geographical distribution of strains. In order to establish such baseline information, RAPD profiling of a large population of isolates from the western and central regions of the Eastern Cape Province was undertaken. A smaller number of drug resistant strains from a small area of KwaZulu-Natal were also analysed, with a view to establishing the genetic difference between strains from the two provinces. Cluster analysis, analysis of molecular variance and Geographical Information Systems technology were used to analyse the RAPD profiles generated. An unexpectedly high degree of genetic diversity was detected in strains from both provinces. While no correlation was seen between genetic diversity and either urban-rural situation or geographical location, a small degree of population structure could be correlated with drug resistance in the Eastern Cape. Furthermore, a significant degree of population structure was detected between strains from the two provinces, although this was still within the parameters for conspecific populations. Future work is necessary to further characterise strains from rural areas of both provinces, as well as from the eastern region of the Eastern Cape in an attempt to pinpoint the cause of the separation of the provincial populations.
- Full Text:
- Date Issued: 2000
- «
- ‹
- 1
- ›
- »