Nanostructures and metallophthalocyanines : applications in microbial fuel cells
- Authors: Edwards, Sean
- Date: 2011
- Subjects: Microbial fuel cells , Waste products as fuel , Nanostructured materials , Electrochemistry , Nanotubes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4107 , http://hdl.handle.net/10962/d1011742 , Microbial fuel cells , Waste products as fuel , Nanostructured materials , Electrochemistry , Nanotubes
- Description: Microbial fuel cells (MFCs) are a promising form of alternative energy capable of harnessing the potential energy stores in organic waste. The oxygen reduction reaction (ORR) forms an integral role in the generation of electricity in MFCs however it is also a potential obstacle in enhancing the performance of MFCs. Platinum, a commonly used catalyst for the ORR, is expensive and rare. Significant research has been conducted into developing alternative catalysts. Metallophthalocyanines (MPc) have garnered attention for use as catalysts. Iron phthalocyanine (FePc) has been shown to have catalytic activity towards the reduction of oxygen. Coupling of the catalyst to nanostructured carbon materials, such as multi-walled carbon nanotubes, has been observed to have several advantages as nanostructures have a high surface-to-volume ratio. In this study, we have attempted to assess the suitability of FePc, both its bulk and nanostructured form, as an oxygen reduction catalyst and acid functionalized multi-walled carbon nanotubes for use as a catalyst support using electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. We showed, for the first time, the catalytic nature of nanostructured FePc towards the ORR. Applying the data obtained from the electrochemical analyses, electrodes were modified using FePc and MWCNTs and applied to an Enterobacter cloacae-based MFC. Several operational parameters of the MFC, such as temperature and ionic strength, were optimized during the course of the study. We showed that optimized FePc:MWCNT-modified electrodes compared favourably to platinum-based electrodes in terms of power densities obtained in a microbial fuel cell.
- Full Text:
- Date Issued: 2011
- Authors: Edwards, Sean
- Date: 2011
- Subjects: Microbial fuel cells , Waste products as fuel , Nanostructured materials , Electrochemistry , Nanotubes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4107 , http://hdl.handle.net/10962/d1011742 , Microbial fuel cells , Waste products as fuel , Nanostructured materials , Electrochemistry , Nanotubes
- Description: Microbial fuel cells (MFCs) are a promising form of alternative energy capable of harnessing the potential energy stores in organic waste. The oxygen reduction reaction (ORR) forms an integral role in the generation of electricity in MFCs however it is also a potential obstacle in enhancing the performance of MFCs. Platinum, a commonly used catalyst for the ORR, is expensive and rare. Significant research has been conducted into developing alternative catalysts. Metallophthalocyanines (MPc) have garnered attention for use as catalysts. Iron phthalocyanine (FePc) has been shown to have catalytic activity towards the reduction of oxygen. Coupling of the catalyst to nanostructured carbon materials, such as multi-walled carbon nanotubes, has been observed to have several advantages as nanostructures have a high surface-to-volume ratio. In this study, we have attempted to assess the suitability of FePc, both its bulk and nanostructured form, as an oxygen reduction catalyst and acid functionalized multi-walled carbon nanotubes for use as a catalyst support using electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. We showed, for the first time, the catalytic nature of nanostructured FePc towards the ORR. Applying the data obtained from the electrochemical analyses, electrodes were modified using FePc and MWCNTs and applied to an Enterobacter cloacae-based MFC. Several operational parameters of the MFC, such as temperature and ionic strength, were optimized during the course of the study. We showed that optimized FePc:MWCNT-modified electrodes compared favourably to platinum-based electrodes in terms of power densities obtained in a microbial fuel cell.
- Full Text:
- Date Issued: 2011
Polymers, catalysts and nanostructures a hybrid approach to biomolecule detection
- Authors: Frith, Kelly-Anne
- Date: 2009
- Subjects: Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3980 , http://hdl.handle.net/10962/d1004039 , Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Description: The main goals in electroanalytical sensing are towards improved sensitivity and selectivity, or specificity, of an analyte. There are several approaches to achieving these goals with the main approach being modification of an electrode surface with synthetic or natural catalysts (enzymes), polymers and also utilisation of nanostructured materials. At present, there is a strong movement towards hybrid sensing which couple different properties of two or more surface modification approaches. In this thesis, a range of these surface modifications were explored for analysis and detection of two main analytes: the amino acid, tryptophan (Trp); and, the neurotransmitter, dopamine (DA). Specifically, this thesis aimed to utilise these methods to enhance the sensitivity and selectivity for Trp over an interferent, the indoleamine, melatonin (Mel); and, DA over the vitamin, ascorbic acid (AA). For Trp detection, immobilisation of an enzyme, Tryptophanase (Trpase) resulted in poor selectivity for the analyte. However, enhanced sensitivity and selectivity was achieved through pH manipulation of the electrolyte medium at a Nafion®-modified electrode surface for both Trp and Mel. At pH 3.0, the Mel and Trp anodic peak potentials were sufficiently resolved allowing for an LOD of 1.60 and 1.62 nM,respectively, and permitting the accurate analysis of Trp in a dietary supplement containing Mel. Multi-walled carbon nanotubes (MWCNTs) suspended in Nafion® exhibited further increases in the signal responses of these analytes at pH 3.0 and 7.4 with minimal change in the resolution of the anodic peaks. A lower sensitivity was, therefore, observed at the Nafion® and MWCNT modified electrode compared to the Nafion®-modified electrode at pH 3.0 with LODs of 0.59 and 0.80 nM exhibited for Trp and Mel, respectively. Enhanced selectivity for Trp in the presence of Mel can be achieved with MWCNTs in the presence of metallotetrasulphonated phthalocyanines (MTSPcs) particularly at pH 3.0, owing to cation exchange effects. However, the lack of sensitivity towards Trp, and even Mel, at this CoTSPc and MWCNT modified electrode remains a drawback. For DA, detection at the MWCNT and Nafion® surface resulted in improved sensitivity over that of both the bare electrode (613.0 nM) and the Nafion® modified electrode (1045.1 nM) with a calculated LOD of 133.9 nM at this layer. Furthermore, improvements in the selectivity of DA were achieved at the Nafion® and MWCNT modified electrode as exclusion of AA (150 μM) was achieved. At the MWCNT and CoTSPc surface, AA was excluded up to 130 μM with sensitivity for DA extending as low as 14.3 nM, far greater than observed for Trp and Mel. These concentrations are well within physiological concentration ranges and represent the most significant solution yet in terms of AA exclusion and enhanced sensitivity for DA. An examination of the surface layering by impedance spectroscopy and atomic force microscopy indicates that the success of the hybrid sensor utilising CoTSPc and MWCNTs lay in improved dispersion of MWCNTs and improved electron transfer kinetics, facilitated by the net charge of the materials present. This thesis, thus, showed the utility of a judicious selection of synthetic and biological catalysts, polymers and carbon nanomaterials towards a hybrid approach to the electrochemical sensing of Trp, Mel, DA and AA with focus on sensitivity and selectivity of these analytes.
- Full Text:
- Date Issued: 2009
- Authors: Frith, Kelly-Anne
- Date: 2009
- Subjects: Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3980 , http://hdl.handle.net/10962/d1004039 , Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Description: The main goals in electroanalytical sensing are towards improved sensitivity and selectivity, or specificity, of an analyte. There are several approaches to achieving these goals with the main approach being modification of an electrode surface with synthetic or natural catalysts (enzymes), polymers and also utilisation of nanostructured materials. At present, there is a strong movement towards hybrid sensing which couple different properties of two or more surface modification approaches. In this thesis, a range of these surface modifications were explored for analysis and detection of two main analytes: the amino acid, tryptophan (Trp); and, the neurotransmitter, dopamine (DA). Specifically, this thesis aimed to utilise these methods to enhance the sensitivity and selectivity for Trp over an interferent, the indoleamine, melatonin (Mel); and, DA over the vitamin, ascorbic acid (AA). For Trp detection, immobilisation of an enzyme, Tryptophanase (Trpase) resulted in poor selectivity for the analyte. However, enhanced sensitivity and selectivity was achieved through pH manipulation of the electrolyte medium at a Nafion®-modified electrode surface for both Trp and Mel. At pH 3.0, the Mel and Trp anodic peak potentials were sufficiently resolved allowing for an LOD of 1.60 and 1.62 nM,respectively, and permitting the accurate analysis of Trp in a dietary supplement containing Mel. Multi-walled carbon nanotubes (MWCNTs) suspended in Nafion® exhibited further increases in the signal responses of these analytes at pH 3.0 and 7.4 with minimal change in the resolution of the anodic peaks. A lower sensitivity was, therefore, observed at the Nafion® and MWCNT modified electrode compared to the Nafion®-modified electrode at pH 3.0 with LODs of 0.59 and 0.80 nM exhibited for Trp and Mel, respectively. Enhanced selectivity for Trp in the presence of Mel can be achieved with MWCNTs in the presence of metallotetrasulphonated phthalocyanines (MTSPcs) particularly at pH 3.0, owing to cation exchange effects. However, the lack of sensitivity towards Trp, and even Mel, at this CoTSPc and MWCNT modified electrode remains a drawback. For DA, detection at the MWCNT and Nafion® surface resulted in improved sensitivity over that of both the bare electrode (613.0 nM) and the Nafion® modified electrode (1045.1 nM) with a calculated LOD of 133.9 nM at this layer. Furthermore, improvements in the selectivity of DA were achieved at the Nafion® and MWCNT modified electrode as exclusion of AA (150 μM) was achieved. At the MWCNT and CoTSPc surface, AA was excluded up to 130 μM with sensitivity for DA extending as low as 14.3 nM, far greater than observed for Trp and Mel. These concentrations are well within physiological concentration ranges and represent the most significant solution yet in terms of AA exclusion and enhanced sensitivity for DA. An examination of the surface layering by impedance spectroscopy and atomic force microscopy indicates that the success of the hybrid sensor utilising CoTSPc and MWCNTs lay in improved dispersion of MWCNTs and improved electron transfer kinetics, facilitated by the net charge of the materials present. This thesis, thus, showed the utility of a judicious selection of synthetic and biological catalysts, polymers and carbon nanomaterials towards a hybrid approach to the electrochemical sensing of Trp, Mel, DA and AA with focus on sensitivity and selectivity of these analytes.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »