A study of carbonate-rich brines from Sua Pan to characterize organic contaminants in the soda ash process
- Authors: Joseph, Manjusha
- Date: 2001
- Subjects: Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4031 , http://hdl.handle.net/10962/d1004091 , Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Description: Botswana Ash (Pty) Ltd which is situated in Sua Pan, north east Bostwana, is one of Africa's largest suppliers of salt and soda ash. For a number of years, the company has been experiencing problems which have resulted in the final soda ash product being contaminated and discoloured. The problems experienced at Sua Pan have been reported also to occur in other salt works all over the world. It has been suggested that contamination in many salt works could be possibly be due to the microbial activity by halophilic algae and bacteria that grow in the solar ponds. This study was undertaken to investigate the nature of the contaminating organic compounds present in the brine, to identify the compounds, and to establish how these components vary during the various stages of the soda ash processing. For this study, two sets of brine samples were used; the first set was collected before the summer rains and the second set was collected after the summer rains. Solid bicarbonate and soda ash samples were also used. Extractions, desalting, UV and HPLC analysis and oxidative biotransformations using four enzymes, were used for developing profiles and characterizing the brine components. From these studies, we were able to confirm that the components of the brine are organic in nature. A thorough study of one of the compounds isolated,from solid bicarbonate and soda ash was conducted using UV, HPLC, IR, NMR, HPLC-MS, GC-MS and TLC. The results of these analyses, show that the. isolated compound was benzyl butyl phthalate which is generally regarded to be humic in nature. This compound was found to be present in all the brine samples collected after the summer rains including the well brine, suggesting this compound occurs naturally and is not formed during the processing.
- Full Text:
- Date Issued: 2001
The nature and control of organic compounds in soda ash evaporate production
- Authors: Masemola, Patricia Mmoniemang
- Date: 2000
- Subjects: Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3902 , http://hdl.handle.net/10962/d1003961 , Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Description: Solar evaporite systems are man-managed ecosystems which are highly vulnerable to biological,physical and chemical disturbances. The problems encountered in such systems are in many cases found to be associated with the microbial ecology and the design of the system. This project focussed on investigating the nature of organic compounds contaminating soda ash produced at a solar evaporite production system located at Sua Pan in Botswana. Several years after the plant was commissioned, problems, including accumulation of total organic carbon (TOC) and discolouration of the soda ash product were encountered. The salt produced also retained high moisture content and was coloured pink. These phenomena impacted severely on the economic performance of the enterprise. This study was aimed at determining the origin and fate of these organic compounds within the system in order to elucidate the nature of the problem and also to conceptualise a remediation strategy suitable to reducing its impact. This was achieved by analysis of both dialysed and solvent extracts of the influent brine (well-brine), brine in the ponds (T-brine) and the bicarbonate filter cake. Although complete identification of the organic compounds isolated was not undertaken in this study, spectroscopic analysis of compounds isolated, by UV, IR, NMR and MS, strongly indicated that fulvic acids, a component of the influent well-brine organics, contribute to the organic contamination of the final product. Part of this component, however, is degraded during the ponding process. It was shown that an extracellular polysaccharide (EPS) produced by Dunaliella. spp., which proliferates in the evaporation ponds, contributes in a major way to the accumulation of TOC in the system. This was demonstrated by relating the sugar profile of carbohydrates isolated from the pond brine and final product, being arabinose, xylose, 2-o-methyl hexose, mannose, glucose and galactose. Studies reported show that EPS production was enhanced when algal cultures were exposed to stress conditions of high illumination, increasing salinity and temperature, and nitrogen limitation. Studies undertaken for the development of a remediation process for this system have shown that nutrient stripping and bacterial systems could be applied to deal with the dissolved TOC fraction, whereas adsorption systems could deal with the particulate fractions. Algal systems showed most potential for the removal of nutrients in the influent well-brine compared to chemical processes.Complete removal of ammonium and phosphorus removal efficiencies of pproximately 50% were achieved in an unoptimised pilot-scale Dunaliella-based HRAP. While similar effects were demonstrated for chemical processes, some economic constraints were noted. The potential of halophilic bacterial systems for the degradation of organic compounds in brine was also demonstrated. The limitations on the performance of such systems, associated with the low metabolic diversity, and poor immobilisation of physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product.halobacteria, however, were noted. Although physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product. Apart from a description of the microbial ecology of the ponds and the identification of major contributions to the TOC of the final product, a number of remediation strategies were evaluated and are described. These include chemical and biological stripping of nutrients sustaining microbial TOC production in the ponds, and also biological and physico-chemical processes for their removal once formed. Future studies to undertake the further development of these proposals has been described
- Full Text:
- Date Issued: 2000
Homogenous and heterogenous catalytic activity of metallophthalocyanines towards electrochemical detection of organic compounds
- Authors: Mafatle, Tsukutlane J P
- Date: 1998
- Subjects: Electrochemistry , Organic compounds , Phenols
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4316 , http://hdl.handle.net/10962/d1004974 , Electrochemistry , Organic compounds , Phenols
- Description: Cysteine plays an important role in many biological and pharmaceutical systems. Therefore, in view of its importance, it is essential to find means of detecting it at the lowest possible levels. In this regard, electrochemical techniques have been found to be capable of detecting analytes even at micro levels. However, electrochemical determination of cysteine occurs at a very high potentials. These overpotentials makes quantitative analysis or detection of cysteine difficult at most conventional carbon electrodes. On platinum electrode, the oxidation of cysteine has been reported to occur in the potential range 0.7 to 1.45 V (vs NHE). Therefore, the object of this investigative study has been to find an active complex that could replace platinum and other expensive metals as electrodes. Such a complex should also be capable of reducing the potential at which the oxidation of cysteine occurs on carbon electrodes. As a result, this manuscript gives a full report on the investigative study of electrocatalytic activity of molybdenum phthalocyanine complexes towards detection of cysteine. Molybdenum phthalocyanine, OMo(OH)Pc, and its tetrasulfonated derivative, [OMo(OH)TSPc]⁴⁻ were successfully used to reduce the potential needed to initiate the oxidation of cysteine on carbon paste electrodes (CPE). The oxidation of cysteine on CPE modified with [OMo(OH)Pc]⁴⁻ was found to occur at 0.29 V (vs Ag/AgCl), and in the presence of [OMo(OH)TSPc]⁴⁻ species in solution the oxidation occurred at 0.33 V (vs Ag/AgCl). Molybdenum, in the oxidation states of Mo(IV), Mo(V) and Mo(VI), is found in biological systems as an essential trace element, participating in a number of enzymatic reactions, where it is believed to be coordinated to sulphur-containing ligands in many molybdenum enzymes. This therefore explains why molybdenum phthalocyanines were employed in electroanalytical detection of sulphur containing amino acid, cysteine. Electrochemical methods have also been successfully used in detection of environmental pollutants such as phenolic compounds. Phenolic compounds are oxidised at readily accessible potentials. However, like cysteine, there are problems associated with the electrochemical detection of these important environmental pollutants. Their electrooxidation is known to form dimeric and/or polymeric oxidation products which adsorb onto the electrode surface, thus -videactivating it. Therefore, to address this problem, cobalt phthalocyanine (CoPc) and its tetrasulfonated derivative, [CoTSPc]⁴⁻ were employed in electrocatalytic detection of phenolic compounds. These complexes were found to increase the anodic peak currents for the oxidation of o-cresol, m-cresol, p-cresol, phenol, 2-chlorophenol and 4-chlorophenol. In addition, CoPc deposited onto the glassy carbon electrode improved the stability of the electrode, by reducing electrode poisoning caused by the electrooxidation products of the mentioned phenolic compounds. The potential at which the oxidation occurred and the current response of individual phenolic compounds depended on the degree of substitution and the type of substituent on the phenol molecule. In general, the current response was found to be lower for chlorinated phenols compared with the cresols and phenol. To establish the role of the central metal in the catalytic process, comparison of the electrocatalytic activity of some of the first row transition metal phthalocyanines, for the detection of mono-substituted phenolic compounds, showed the following trend: Co⁽¹¹⁾ > Mn⁽¹¹⁾ > Fe⁽¹¹⁾Pc > Ni⁽¹¹⁾Pc > Cu⁽¹¹⁾Pc > H₂Pc > Zn⁽¹¹⁾Pc > Bare GCE. A report is also given on electrocatalysis using [CoTSPc]⁴⁻ electrochemically deposited on the glassy carbon electrode. This was also found to enhance the anodic peak currents for the oxidation of all phenolic compounds. A report on the effects of scan rate, operating potential, analyte concentration and other variables is also given.
- Full Text:
- Date Issued: 1998
Investigation of the formation of complexes between selected organic compounds and the chlorides and sulphates of chromium
- Authors: Ellis, Melville John
- Date: 1961
- Subjects: Organic compounds , Chromium compounds , Chlorides , Sulfates
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4466 , http://hdl.handle.net/10962/d1011744 , Organic compounds , Chromium compounds , Chlorides , Sulfates
- Description: Some properties of soluble chromium complexions containing coordinated aliphatic acids have been studied. The work falls naturally into two sections. In the first, the coordination of a series of ⊄, β and⊁amino acids by chromium chloride has been studied by physical methods. The tanning action of chromium chloride in the presence of these amino acids has also been studied. The absorption spectra of the complexes were similar to those reported previously for trivalent chromium solutions, having two pronounced maxima in the visible region. From the variations in these absorption maxima, it is suggested that the absorption maximum in the 580 m u region is influenced by coordination of the chromium with the ligand, while the maximum in the 420 m u region is also affected by the olation of the basic chromium salts. The spectrophotometric evidence indicates that raising the pH or the concentration of the ligand in the solution increases the amount of coordination, and further, that the tendency for coordination increases as the hydrocarbon chain separating the carboxyl and amino groups becomes longer. This suggests that tho stability of the complex is not dependent on chelate ring formation, but is influenced by the pK₁ value of the carboxyl group of the . ligand. Potentiometric titrations support the hypothesis that only the carboxyl group is coordinated, to an extent depending on its pK₁ value, since the curves have shown that the amino group is still free to titrate. Paper electrophoresis has shown that all the complexes prepared were cationic, indicating that the amino acids were coordinated as dipolar ions. The tanning action of the masked chromium solutions has confirmed the deductions made from the physical measurements. Increasing the amount of amino acid added to the solution lowered the chromium fixation and the hydrothermal stability of the leather, and further, that for solutions at the same pH containing the same amount of masking agent, tanning action was least for the ⊁ amino acid and greatest for the ⊄ amino acids. Comparison of the present data with the corresponding results obtained with chrome alum solutions showed that coordination of the amino acids was greater in the case of the chromium chloride solutions. The second section of the experimental work was an investigation of the coordination of substituted acetic and propionic acids by chromium chloride and chromium sulphate. Spectrophotometric and potentiometric methods were applied and the various solutions were also used in miniature tanning experiments. Certain difficulties were encountered in the preparation of some of the complexes, and it was not possible to carry the work to a point where conclusive results could be obtained. Nevertheless, the work reported suggests that chelate ring formation occurs in the coordination of hydroxy-carboxylic acids, resulting in exceptionally high stability of the complex. In the case of the other ligands, containing amino, chloro and bromo groups, as well as with acetic and propionic acids, the results suggest that coordination involves the carboxyl group only, and that the pY value of this group is an important factor determining the stability of the complexes.
- Full Text:
- Date Issued: 1961
The photo-fluorescence properties of some organic materials
- Authors: Cameron, Antony John Wesley
- Date: 1959
- Subjects: Hydrocarbons -- Spectra -- Fluorescence , Organic compounds , Energy transfer
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5514 , http://hdl.handle.net/10962/d1010041 , Hydrocarbons -- Spectra -- Fluorescence , Organic compounds , Energy transfer
- Description: In this thesis I have given an account of the experimental work carried out by me at Rhodes University from the beginning of 1954 to the end of 1955, and the analysis of the results which was completed during the following two years, 1956 and 1957. The dissertation is divided into two sections; Part I deals with the photo fluorescence spectra of a large group of organic compounds, and Part 2 describes an investigation of the photo-fluorescence properties of and energy transfer in liquid organic solutions.
- Full Text:
- Date Issued: 1959