Function of a cloned polyphenolase in organic synthesis
- Authors: Naidoo, Michael Joseph
- Date: 1995
- Subjects: Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4042 , http://hdl.handle.net/10962/d1004103 , Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Description: The enzyme polyphenolase, which catalyses the oxidation of phenols to catechols and subsequently dehydrogenates these to o-quinones, is widely distributed in nature. The multicopy plasmid vector pIJ702 contains a mel gene from Streptomyces antibioticus, that codes for the production of a polyphenol oxidase. The plasmid was isolated from Streptomyces lividans 66pIJ702 and subjected to a variety of mutagenic treatments in order to establish a structurefunction relationship for the polyphenolase enzymes. An attempt was made to engineer the polyphenolase enzyme by localized random mutagenesis in vitro of the mel gene on pIJ702, in order to alter properties like productivity, activity and substrate specificity. It was hoped to alter the amino acid sequence of the active site of the enzyme in order to facilitate catalysis in an organic environment. The plasmid was subsequently transformed into a plasmid-free Streptomyces strain, and enzyme production was carried out in batch culture systems, in order to determine the effect of the height treatment, and to isolate and propagate functional polyphenolase mutants for organic synthesis.
- Full Text:
- Authors: Naidoo, Michael Joseph
- Date: 1995
- Subjects: Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4042 , http://hdl.handle.net/10962/d1004103 , Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Description: The enzyme polyphenolase, which catalyses the oxidation of phenols to catechols and subsequently dehydrogenates these to o-quinones, is widely distributed in nature. The multicopy plasmid vector pIJ702 contains a mel gene from Streptomyces antibioticus, that codes for the production of a polyphenol oxidase. The plasmid was isolated from Streptomyces lividans 66pIJ702 and subjected to a variety of mutagenic treatments in order to establish a structurefunction relationship for the polyphenolase enzymes. An attempt was made to engineer the polyphenolase enzyme by localized random mutagenesis in vitro of the mel gene on pIJ702, in order to alter properties like productivity, activity and substrate specificity. It was hoped to alter the amino acid sequence of the active site of the enzyme in order to facilitate catalysis in an organic environment. The plasmid was subsequently transformed into a plasmid-free Streptomyces strain, and enzyme production was carried out in batch culture systems, in order to determine the effect of the height treatment, and to isolate and propagate functional polyphenolase mutants for organic synthesis.
- Full Text:
Synthesis and conformational studies of indolizines
- Authors: George, Rosemary
- Date: 1994
- Subjects: Indole alkaloids -- Research , Organic compounds -- Synthesis , Chemistry, Organic
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4367 , http://hdl.handle.net/10962/d1005032 , Indole alkaloids -- Research , Organic compounds -- Synthesis , Chemistry, Organic
- Description: The present investigation has involved a kinetic and mechanistic study of the thermal cyclization of 3-acetoxy-3-(2-pyridyl)-2-methylenepropanoate esters and related compounds to 2-substituted indolizines. Substrates for the kinetic study were prepared via the Baylis-Hillmann reaction of pyridine-2-carboxaldehydes with acrylate esters, acrylonitrile and methyl vinyl ketone. The resulting hydroxy compounds were then acetylated to afford the acetoxy derivatives, thermal cyclization of which gave the corresponding 2-substituted indolizines. The cyclization reactions was followed using 'H NMR spectroscopy and were shown to follow firstorder kinetics. The influence of the various substituents on the observed first-order rate constants has been examined and variable temperature studies have permitted evaluation of activation parameters for the formation of methyl indolizine-2-carboxylate and ethyl indolizine-2-carboxylate. An alternative route to 2-substituted indolizines via halogenated derivatives was explored and several halogenated 2-pyridyl derivatives were synthesised and their thermal cyclization to indolizines was attempted. Novel 5-methylindolizine-2-carboxamides were prepared as part of this investigation and dynamic NMR spectroscopy was used to study internal rotation about the amide N-CO bond in these compounds.
- Full Text:
- Authors: George, Rosemary
- Date: 1994
- Subjects: Indole alkaloids -- Research , Organic compounds -- Synthesis , Chemistry, Organic
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4367 , http://hdl.handle.net/10962/d1005032 , Indole alkaloids -- Research , Organic compounds -- Synthesis , Chemistry, Organic
- Description: The present investigation has involved a kinetic and mechanistic study of the thermal cyclization of 3-acetoxy-3-(2-pyridyl)-2-methylenepropanoate esters and related compounds to 2-substituted indolizines. Substrates for the kinetic study were prepared via the Baylis-Hillmann reaction of pyridine-2-carboxaldehydes with acrylate esters, acrylonitrile and methyl vinyl ketone. The resulting hydroxy compounds were then acetylated to afford the acetoxy derivatives, thermal cyclization of which gave the corresponding 2-substituted indolizines. The cyclization reactions was followed using 'H NMR spectroscopy and were shown to follow firstorder kinetics. The influence of the various substituents on the observed first-order rate constants has been examined and variable temperature studies have permitted evaluation of activation parameters for the formation of methyl indolizine-2-carboxylate and ethyl indolizine-2-carboxylate. An alternative route to 2-substituted indolizines via halogenated derivatives was explored and several halogenated 2-pyridyl derivatives were synthesised and their thermal cyclization to indolizines was attempted. Novel 5-methylindolizine-2-carboxamides were prepared as part of this investigation and dynamic NMR spectroscopy was used to study internal rotation about the amide N-CO bond in these compounds.
- Full Text:
- «
- ‹
- 1
- ›
- »