The petrology and geochemistry of the lower pyroxenite succession of the Great Dyke in the Mutorashanga area
- Mason-Apps, Alexander Dymoke
- Authors: Mason-Apps, Alexander Dymoke
- Date: 1998
- Subjects: Petrology , Geochemistry , Dikes (Geology) , Dikes (Geology) -- Zimbabwe
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4990 , http://hdl.handle.net/10962/d1005602 , Petrology , Geochemistry , Dikes (Geology) , Dikes (Geology) -- Zimbabwe
- Description: This thesis focuses on the petrology and geochemistry of the lower Pyroxenite Succession of the Great Dyke of Zimbabwe in an area to the south ofMutorashanga. Particular emphasis is placed upon the economically important chromitite C5, and on the pervasive serpentinization of olivinerich rocks. An overview of the Great Dyke, including the Satellite Dykes, the structure and stratigraphy of the Great Dyke, the economic resources of the Great Dyke, and the evolution of the Great Dyke magma, is given. A review of the geodynamic history of the Zimbabwe Archaean craton, which culminated in widespread cratonisation and emplacement of the Great Dyke is also provided. The silicate rocks of the lower Pyroxenite Succession are highly adcumulate dunites and orthopyroxenites, with well-developed granular textures and a restricted mineral assemblage of olivine and pyroxene, with very minor plagioclase and clinopyroxene. Within cyclic units, the silicate rocks commonly display a textural and modal progression from granular dunite through poikilitic harzburgite, granular harzburgite, and olivine orthopyroxenite, to granular orthopyroxenite. Chromitites commonly occur at the base of each cyclic unit, these are thin, massive, coarse-grained layers, and are shown to be modified, texturally and compositionally, by postcumulus annealing processes. The olivine-rich rocks are pervasively serpentinized to a depth of over 300 metres. The serpentites typically display well-developed pseudomorphic mesh textures, with a slight overprint of nonpseudomorphic interpenetrating textures and late-stage cross-cutting veins. X-Ray diffraction studies indicate that chrysotile is the dominant serpentine mineral, and also reveal the presence of a nickeliferous magnesium hydroxide, occurring as an intimate admixture with serpentine, and believed to be a nickel-bearing analogue of brucite. Mineral and whole rock compositions of chromitite and silicate rocks highlight the strongly magnesian nature of the Ultramafic Sequence. Studies ofthe footwall chromites below chromitite C5 are consistant with a model of replenishment of primitive magma into the Great Dyke magma chamber, at the base of each cyclic unit. The magma injection and subsequent mixing with the evolved resident magma gives rise to chromitite fonnation, and a causes a reversal of the fractionation trend, resulting in a return to more primitive compositions in the silicate rocks. The silicates display an overall fractionation trend that reflects the evolving composition of the parental magma.
- Full Text:
- Authors: Mason-Apps, Alexander Dymoke
- Date: 1998
- Subjects: Petrology , Geochemistry , Dikes (Geology) , Dikes (Geology) -- Zimbabwe
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4990 , http://hdl.handle.net/10962/d1005602 , Petrology , Geochemistry , Dikes (Geology) , Dikes (Geology) -- Zimbabwe
- Description: This thesis focuses on the petrology and geochemistry of the lower Pyroxenite Succession of the Great Dyke of Zimbabwe in an area to the south ofMutorashanga. Particular emphasis is placed upon the economically important chromitite C5, and on the pervasive serpentinization of olivinerich rocks. An overview of the Great Dyke, including the Satellite Dykes, the structure and stratigraphy of the Great Dyke, the economic resources of the Great Dyke, and the evolution of the Great Dyke magma, is given. A review of the geodynamic history of the Zimbabwe Archaean craton, which culminated in widespread cratonisation and emplacement of the Great Dyke is also provided. The silicate rocks of the lower Pyroxenite Succession are highly adcumulate dunites and orthopyroxenites, with well-developed granular textures and a restricted mineral assemblage of olivine and pyroxene, with very minor plagioclase and clinopyroxene. Within cyclic units, the silicate rocks commonly display a textural and modal progression from granular dunite through poikilitic harzburgite, granular harzburgite, and olivine orthopyroxenite, to granular orthopyroxenite. Chromitites commonly occur at the base of each cyclic unit, these are thin, massive, coarse-grained layers, and are shown to be modified, texturally and compositionally, by postcumulus annealing processes. The olivine-rich rocks are pervasively serpentinized to a depth of over 300 metres. The serpentites typically display well-developed pseudomorphic mesh textures, with a slight overprint of nonpseudomorphic interpenetrating textures and late-stage cross-cutting veins. X-Ray diffraction studies indicate that chrysotile is the dominant serpentine mineral, and also reveal the presence of a nickeliferous magnesium hydroxide, occurring as an intimate admixture with serpentine, and believed to be a nickel-bearing analogue of brucite. Mineral and whole rock compositions of chromitite and silicate rocks highlight the strongly magnesian nature of the Ultramafic Sequence. Studies ofthe footwall chromites below chromitite C5 are consistant with a model of replenishment of primitive magma into the Great Dyke magma chamber, at the base of each cyclic unit. The magma injection and subsequent mixing with the evolved resident magma gives rise to chromitite fonnation, and a causes a reversal of the fractionation trend, resulting in a return to more primitive compositions in the silicate rocks. The silicates display an overall fractionation trend that reflects the evolving composition of the parental magma.
- Full Text:
A contribution to the petrology of kimberlites
- Authors: Kruger, Floris Johan
- Date: 1978 , 2013-10-17
- Subjects: Kimberlite -- Africa, Southern , Petrology , Igneous rocks -- Inclusions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5024 , http://hdl.handle.net/10962/d1006886 , Kimberlite -- Africa, Southern , Petrology , Igneous rocks -- Inclusions
- Description: The petrogenetic relationships of the different varieties of kimberlite in the De Beers Mine and Letseng-Ia-terai composite diatremes have been investigated using petrographic and chemical methods. Kimberlites in the Letseng-Ia-terai diatreme were found to be strongly contaminated by crustal material, mainly basalt. A method to correct for the effects of the contamination has been developed and applied to these kimberlites. Using the corrected data, the four kimberlite types in each group appear to be related to each other by crystal/liquid fractionation models. However the two groups cannot be related to each other. The De Beer Mine has two varieties of kimberlite, a monticellite apatite and calcite rich variety which intruded first, and a phlogopite rich type forming a discrete cylindrical body within the earlier kimberlite. These two kimberlites do not appear to be related by any of the fractionation models discussed. An examination of the data from this work and published sources, suggests that kimberlites are derived from below the low velocity zone by small degrees of partial melting involving garnet lherzolite with subordinate phlogopite and carbonate. Diamonds are probably incorporated as xenocrysts in the magma. Upward movement and emplacement of kimberlite appears to have been very rapid. The diatremes were probably eroded and shaped by gas, derived from the kimberlite magma, escaping to surface along weak zones in the earth's crust. Xenoliths of crustal material incorporated in the kimberlite on intrusion have also been studied and various features due to alteration by the magma are described, including the formation of natrolite and cebollite. The latter is a rare mineral that has not been described from kimberlite before. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Authors: Kruger, Floris Johan
- Date: 1978 , 2013-10-17
- Subjects: Kimberlite -- Africa, Southern , Petrology , Igneous rocks -- Inclusions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5024 , http://hdl.handle.net/10962/d1006886 , Kimberlite -- Africa, Southern , Petrology , Igneous rocks -- Inclusions
- Description: The petrogenetic relationships of the different varieties of kimberlite in the De Beers Mine and Letseng-Ia-terai composite diatremes have been investigated using petrographic and chemical methods. Kimberlites in the Letseng-Ia-terai diatreme were found to be strongly contaminated by crustal material, mainly basalt. A method to correct for the effects of the contamination has been developed and applied to these kimberlites. Using the corrected data, the four kimberlite types in each group appear to be related to each other by crystal/liquid fractionation models. However the two groups cannot be related to each other. The De Beer Mine has two varieties of kimberlite, a monticellite apatite and calcite rich variety which intruded first, and a phlogopite rich type forming a discrete cylindrical body within the earlier kimberlite. These two kimberlites do not appear to be related by any of the fractionation models discussed. An examination of the data from this work and published sources, suggests that kimberlites are derived from below the low velocity zone by small degrees of partial melting involving garnet lherzolite with subordinate phlogopite and carbonate. Diamonds are probably incorporated as xenocrysts in the magma. Upward movement and emplacement of kimberlite appears to have been very rapid. The diatremes were probably eroded and shaped by gas, derived from the kimberlite magma, escaping to surface along weak zones in the earth's crust. Xenoliths of crustal material incorporated in the kimberlite on intrusion have also been studied and various features due to alteration by the magma are described, including the formation of natrolite and cebollite. The latter is a rare mineral that has not been described from kimberlite before. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- «
- ‹
- 1
- ›
- »