Effects of removing Acacia Mearnsii on the water table, soil and vegetation properties in the Tsomo Valley of the Eastern Cape Province, South Africa
- Moyo, Hloniphani Peter Mthunzi
- Authors: Moyo, Hloniphani Peter Mthunzi
- Date: 2010
- Subjects: Plant-water relationships , Acacia mearnsii , Water table , Wattles (Plants) -- South Africa -- Eastern Cape , Streamflow -- South Africa -- Eastern Cape , Groundwater -- South Africa -- Eastern Cape , Groundwater recharge -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc Agric (Pasture Science)
- Identifier: vital:11173 , http://hdl.handle.net/10353/d1001011 , Plant-water relationships , Acacia mearnsii , Water table , Wattles (Plants) -- South Africa -- Eastern Cape , Streamflow -- South Africa -- Eastern Cape , Groundwater -- South Africa -- Eastern Cape , Groundwater recharge -- South Africa -- Eastern Cape
- Full Text:
- Date Issued: 2010
- Authors: Moyo, Hloniphani Peter Mthunzi
- Date: 2010
- Subjects: Plant-water relationships , Acacia mearnsii , Water table , Wattles (Plants) -- South Africa -- Eastern Cape , Streamflow -- South Africa -- Eastern Cape , Groundwater -- South Africa -- Eastern Cape , Groundwater recharge -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc Agric (Pasture Science)
- Identifier: vital:11173 , http://hdl.handle.net/10353/d1001011 , Plant-water relationships , Acacia mearnsii , Water table , Wattles (Plants) -- South Africa -- Eastern Cape , Streamflow -- South Africa -- Eastern Cape , Groundwater -- South Africa -- Eastern Cape , Groundwater recharge -- South Africa -- Eastern Cape
- Full Text:
- Date Issued: 2010
Drought responses of C3 and C4 (NADP-ME) Panicoid grasses
- Authors: Frole, Kristen Marie
- Date: 2008
- Subjects: Botany -- Research , Grasses -- Physiology -- South Africa , Grasses -- Effect of drought on , Grasses -- Drought tolerance , Plant-water relationships
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4193 , http://hdl.handle.net/10962/d1003762 , Botany -- Research , Grasses -- Physiology -- South Africa , Grasses -- Effect of drought on , Grasses -- Drought tolerance , Plant-water relationships
- Description: The success of C₄ plants lies in their ability to concentrate CO₂ at the site of Rubisco thereby conferring greater efficiencies of light, water and nitrogen. Such characteristics should advantage C₄ plants in arid, hot environments. However, not all C₄ subtypes are drought tolerant. The relative abundance of NADP-ME species declines with increasing aridity. Furthermore, selected species have been demonstrated as being susceptible to severe drought showing metabolic limitations of photosynthesis. However there is a lack of phylogenetic control with many of these studies. The aims of this study were to determine whether the NADP-ME subtype was inherently susceptible to drought by comparing six closely related C₃ and C₄ (NADP-ME) Panicoid grasses. Gas exchange measurements were made during a natural rainless period and a controlled drought / rewatering event. Prior to water stress, the C₄ species had higher assimilation rates (A), and water use efficiencies (WUE[subscript leaf]) than the C₃ species, while transpiration rates (E) and stomatal conductances (g[subscript s]) were similar. At low soil water content, the C₃ species reduced gs by a greater extent than the C₄ species, which maintained higher E during the driest periods. The C₄ species showed proportionally greater reductions in A than the C₃ species and hence lost their WUE[subscript leaf] and photosynthetic advantage. CO₂ response curves showed that metabolic limitation was responsible for a greater decrease in A in the C₄ type than the C₃ type during progressive drought. Upon re-watering, photosynthetic recovery was quicker in the C species than the C₄ species. Results from whole plant measurements showed that the C₄ type had a significant whole plant water use efficiency advantage over the C₃ type under well-watered conditions that was lost during severe drought due to a greater loss of leaf area through leaf mortality rather than reductions in plant level transpiration rates. The C₃ type had xylem characteristics that enhanced water-conducting efficiency, but made them vulnerable to drought. This is in contrast to the safer xylem qualities of the C₄ type, which permitted the endurance of more negative leaf water potentials than the C₃ type during low soil water content. Thus, the vulnerability of photosynthesis to severe drought in NADP-ME species potentially explains why NADP-ME species abundance around the world decreases with decreasing rainfall.
- Full Text:
- Date Issued: 2008
- Authors: Frole, Kristen Marie
- Date: 2008
- Subjects: Botany -- Research , Grasses -- Physiology -- South Africa , Grasses -- Effect of drought on , Grasses -- Drought tolerance , Plant-water relationships
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4193 , http://hdl.handle.net/10962/d1003762 , Botany -- Research , Grasses -- Physiology -- South Africa , Grasses -- Effect of drought on , Grasses -- Drought tolerance , Plant-water relationships
- Description: The success of C₄ plants lies in their ability to concentrate CO₂ at the site of Rubisco thereby conferring greater efficiencies of light, water and nitrogen. Such characteristics should advantage C₄ plants in arid, hot environments. However, not all C₄ subtypes are drought tolerant. The relative abundance of NADP-ME species declines with increasing aridity. Furthermore, selected species have been demonstrated as being susceptible to severe drought showing metabolic limitations of photosynthesis. However there is a lack of phylogenetic control with many of these studies. The aims of this study were to determine whether the NADP-ME subtype was inherently susceptible to drought by comparing six closely related C₃ and C₄ (NADP-ME) Panicoid grasses. Gas exchange measurements were made during a natural rainless period and a controlled drought / rewatering event. Prior to water stress, the C₄ species had higher assimilation rates (A), and water use efficiencies (WUE[subscript leaf]) than the C₃ species, while transpiration rates (E) and stomatal conductances (g[subscript s]) were similar. At low soil water content, the C₃ species reduced gs by a greater extent than the C₄ species, which maintained higher E during the driest periods. The C₄ species showed proportionally greater reductions in A than the C₃ species and hence lost their WUE[subscript leaf] and photosynthetic advantage. CO₂ response curves showed that metabolic limitation was responsible for a greater decrease in A in the C₄ type than the C₃ type during progressive drought. Upon re-watering, photosynthetic recovery was quicker in the C species than the C₄ species. Results from whole plant measurements showed that the C₄ type had a significant whole plant water use efficiency advantage over the C₃ type under well-watered conditions that was lost during severe drought due to a greater loss of leaf area through leaf mortality rather than reductions in plant level transpiration rates. The C₃ type had xylem characteristics that enhanced water-conducting efficiency, but made them vulnerable to drought. This is in contrast to the safer xylem qualities of the C₄ type, which permitted the endurance of more negative leaf water potentials than the C₃ type during low soil water content. Thus, the vulnerability of photosynthesis to severe drought in NADP-ME species potentially explains why NADP-ME species abundance around the world decreases with decreasing rainfall.
- Full Text:
- Date Issued: 2008
Water requirements and distribution of Ammophila arenaria and Scaevola plumieri on South African coastal dunes
- Authors: Peter, Craig Ingram
- Date: 2000
- Subjects: Scaevola plumieri , Sand dune plants , Sand dune planting , Plants -- Transpiration , Sandworts , Plant-water relationships , Evapotranspiration , Plants, Effect of heat on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4219 , http://hdl.handle.net/10962/d1003788 , Scaevola plumieri , Sand dune plants , Sand dune planting , Plants -- Transpiration , Sandworts , Plant-water relationships , Evapotranspiration , Plants, Effect of heat on
- Description: Phenomenological models are presented which predicts transpiration rates (E) of individual leaves of Scaevola plumieri, an indigenous dune pioneer, and Ammophila arenaria, an exotic grass species introduced to stabilise mobile sand. In both cases E is predictably related to atmospheric vapour pressure deficit (VPD). VPD is calculated from measurements of ambient temperature and humidity, hence, where these two environmental variables are known, E can be calculated. Possible physiological reasons for the relationships of E to VPD in both species are discussed. Scaling from measurements of E at the leaf level to the canopy level is achieved by summing the leaf area of the canopy in question. E is predicted for the entire canopy leaf area by extrapolation to this larger leaf area. Predicted transpiration rates of individual shoot within the canopy were tested gravimetrically and shown to be accurate in the case of S. plumieri, but less so in the case of A. arenaria. Using this model, the amount of water used by a known area of sand dune is shown to be less than the rainfall input in the case of S. plumieri in wet and dry years. The water use of A. arenaria exceeds rainfall in the low-rainfall year of 1995, while in 1998 rainfall input is slightly higher than water extraction by the plants. Using a geographic information system (GIS), regional maps (surfaces) of transpiration were calculated from surfaces of mean monthly temperature and mean monthly relative humidity. Monthly surfaces of transpiration were subtracted from the monthly median rainfall to produce a surface of mean monthly water deficit. Areas of water surpluses along the coast correspond with the recorded distribution of both species in the seasons that the plants are most actively growing and reproducing. This suggests that unfavourable water availability during these two species growth periods limit their distributions along the coast. In addition to unfavourable water deficits, additional climatic variables that may be important in limiting the distribution of these two species were investigated using a discriminant function analysis.
- Full Text:
- Date Issued: 2000
- Authors: Peter, Craig Ingram
- Date: 2000
- Subjects: Scaevola plumieri , Sand dune plants , Sand dune planting , Plants -- Transpiration , Sandworts , Plant-water relationships , Evapotranspiration , Plants, Effect of heat on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4219 , http://hdl.handle.net/10962/d1003788 , Scaevola plumieri , Sand dune plants , Sand dune planting , Plants -- Transpiration , Sandworts , Plant-water relationships , Evapotranspiration , Plants, Effect of heat on
- Description: Phenomenological models are presented which predicts transpiration rates (E) of individual leaves of Scaevola plumieri, an indigenous dune pioneer, and Ammophila arenaria, an exotic grass species introduced to stabilise mobile sand. In both cases E is predictably related to atmospheric vapour pressure deficit (VPD). VPD is calculated from measurements of ambient temperature and humidity, hence, where these two environmental variables are known, E can be calculated. Possible physiological reasons for the relationships of E to VPD in both species are discussed. Scaling from measurements of E at the leaf level to the canopy level is achieved by summing the leaf area of the canopy in question. E is predicted for the entire canopy leaf area by extrapolation to this larger leaf area. Predicted transpiration rates of individual shoot within the canopy were tested gravimetrically and shown to be accurate in the case of S. plumieri, but less so in the case of A. arenaria. Using this model, the amount of water used by a known area of sand dune is shown to be less than the rainfall input in the case of S. plumieri in wet and dry years. The water use of A. arenaria exceeds rainfall in the low-rainfall year of 1995, while in 1998 rainfall input is slightly higher than water extraction by the plants. Using a geographic information system (GIS), regional maps (surfaces) of transpiration were calculated from surfaces of mean monthly temperature and mean monthly relative humidity. Monthly surfaces of transpiration were subtracted from the monthly median rainfall to produce a surface of mean monthly water deficit. Areas of water surpluses along the coast correspond with the recorded distribution of both species in the seasons that the plants are most actively growing and reproducing. This suggests that unfavourable water availability during these two species growth periods limit their distributions along the coast. In addition to unfavourable water deficits, additional climatic variables that may be important in limiting the distribution of these two species were investigated using a discriminant function analysis.
- Full Text:
- Date Issued: 2000
- «
- ‹
- 1
- ›
- »