Designing and implementing a new pulsar timer for the Hartebeesthoek Radio Astronomy Observatory
- Authors: Youthed, Andrew David
- Date: 2008
- Subjects: Astronomical observatories , Radio astronomy , Pulsars , Astronomical instruments , Reduced instruction set computers , Random access memory
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5458 , http://hdl.handle.net/10962/d1005243 , Astronomical observatories , Radio astronomy , Pulsars , Astronomical instruments , Reduced instruction set computers , Random access memory
- Description: This thesis outlines the design and implementation of a single channel, dual polarization pulsar timing instrument for the Hartebeesthoek Radio Astronomy Observatory (HartRAO). The new timer is designed to be an improved, temporary replacement for the existing device which has been in operation for over 20 years. The existing device is no longer reliable and is di±cult to maintain. The new pulsar timer is designed to provide improved functional- ity, higher sampling speed, greater pulse resolution, more °exibility and easier maintenance over the existing device. The new device is also designed to keeping changes to the observation system to a minimum until a full de-dispersion timer can be implemented at theobservatory. The design makes use of an 8-bit Reduced Instruction Set Computer (RISC) micro-processor with external Random Access Memory (RAM). The instrument includes an IEEE-488 subsystem for interfacing the pulsar timer to the observation computer system. The microcontroller software is written in assembler code to ensure optimal loop execution speed and deterministic code execution for the system. The design path is discussed and problems encountered during the design process are highlighted. Final testing of the new instrument indicates an improvement in the sam- pling rate of 13.6 times and a significant reduction in 60Hz interference over the existing instrument.
- Full Text:
- Date Issued: 2008
- Authors: Youthed, Andrew David
- Date: 2008
- Subjects: Astronomical observatories , Radio astronomy , Pulsars , Astronomical instruments , Reduced instruction set computers , Random access memory
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5458 , http://hdl.handle.net/10962/d1005243 , Astronomical observatories , Radio astronomy , Pulsars , Astronomical instruments , Reduced instruction set computers , Random access memory
- Description: This thesis outlines the design and implementation of a single channel, dual polarization pulsar timing instrument for the Hartebeesthoek Radio Astronomy Observatory (HartRAO). The new timer is designed to be an improved, temporary replacement for the existing device which has been in operation for over 20 years. The existing device is no longer reliable and is di±cult to maintain. The new pulsar timer is designed to provide improved functional- ity, higher sampling speed, greater pulse resolution, more °exibility and easier maintenance over the existing device. The new device is also designed to keeping changes to the observation system to a minimum until a full de-dispersion timer can be implemented at theobservatory. The design makes use of an 8-bit Reduced Instruction Set Computer (RISC) micro-processor with external Random Access Memory (RAM). The instrument includes an IEEE-488 subsystem for interfacing the pulsar timer to the observation computer system. The microcontroller software is written in assembler code to ensure optimal loop execution speed and deterministic code execution for the system. The design path is discussed and problems encountered during the design process are highlighted. Final testing of the new instrument indicates an improvement in the sam- pling rate of 13.6 times and a significant reduction in 60Hz interference over the existing instrument.
- Full Text:
- Date Issued: 2008
Measuring the RFI environment of the South African SKA site
- Authors: Manners, Paul John
- Date: 2007
- Subjects: Radio telescopes , Radio telescopes -- South Africa , Radio astronomy , Radio astronomy -- South Africa , Square Kilometer Array (Spacecraft) , Radio -- Interference -- Measurement
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5474 , http://hdl.handle.net/10962/d1005259 , Radio telescopes , Radio telescopes -- South Africa , Radio astronomy , Radio astronomy -- South Africa , Square Kilometer Array (Spacecraft) , Radio -- Interference -- Measurement
- Description: The Square Kilometre Array (SKA) Project is an international effort to build the world’s largest radio telescope. It will be 100 times more sensitive than any other radio telescope currently in existence and will consist of thousands of dishes placed at baselines up to 3000 km. In addition to its increased sensitivity it will operate over a very wide frequency range (current specification is 100 MHz - 22 GHz) and will use frequency bands not primarily allocated to radio astronomy. Because of this the telescope needs to be located at a site with low levels of radio frequency interference (RFI). This implies a site that is remote and away from human activity. In bidding to host the SKA, South Africa was required to conduct an RFI survey at its proposed site for a period of 12 months. Apart from this core site, where more than half the SKA dishes may potentially be deployed, the measurement of remote sites in Southern Africa was also required. To conduct measurements at these sites, three mobile measurement systems were designed and built by the South African SKA Project. The design considerations, implementation and RFI measurements recorded during this campaign will be the focus for this dissertation.
- Full Text:
- Date Issued: 2007
- Authors: Manners, Paul John
- Date: 2007
- Subjects: Radio telescopes , Radio telescopes -- South Africa , Radio astronomy , Radio astronomy -- South Africa , Square Kilometer Array (Spacecraft) , Radio -- Interference -- Measurement
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5474 , http://hdl.handle.net/10962/d1005259 , Radio telescopes , Radio telescopes -- South Africa , Radio astronomy , Radio astronomy -- South Africa , Square Kilometer Array (Spacecraft) , Radio -- Interference -- Measurement
- Description: The Square Kilometre Array (SKA) Project is an international effort to build the world’s largest radio telescope. It will be 100 times more sensitive than any other radio telescope currently in existence and will consist of thousands of dishes placed at baselines up to 3000 km. In addition to its increased sensitivity it will operate over a very wide frequency range (current specification is 100 MHz - 22 GHz) and will use frequency bands not primarily allocated to radio astronomy. Because of this the telescope needs to be located at a site with low levels of radio frequency interference (RFI). This implies a site that is remote and away from human activity. In bidding to host the SKA, South Africa was required to conduct an RFI survey at its proposed site for a period of 12 months. Apart from this core site, where more than half the SKA dishes may potentially be deployed, the measurement of remote sites in Southern Africa was also required. To conduct measurements at these sites, three mobile measurement systems were designed and built by the South African SKA Project. The design considerations, implementation and RFI measurements recorded during this campaign will be the focus for this dissertation.
- Full Text:
- Date Issued: 2007
Calibration and interpretation of A 2.3 GHz continuum survey
- Authors: Greybe, Andrew
- Date: 1984
- Subjects: Radio astronomy , Astronomical observatories , Galaxies
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5502 , http://hdl.handle.net/10962/d1007210 , Radio astronomy , Astronomical observatories , Galaxies
- Description: This thesis continues the Rhodes 2.3 GHz Survey of the Southern Sky. It consists of two parts : a data processing part and an astronomical analysis part. In the data processing part the data for the regions 4HR to 15HR, -80° to -61° and 12HR to 23HR . -27° to -7° are presented in contour map format. A beam pattern of the Hartebeesthoek telescope at 13 cm is constructed from drift scans of the radio source TAU A. This is used to investigate the data filtering techniques applied to the Rhodes Survey. It is proposed that a set of widely spaced scans which have been referred to the South Celestial Pole can provide a single calibrated baselevel for the Rhodes Survey. The observing technique and the necessary reduction programs to create a coarse grid of antenna temperatures of the Southern Sky using these observation are developed. Preliminary results for this technique are presented as a map of the region 18HR to 6HR, 90° to 30° with a 5°x5° resolution. On the astronomical side two studies are undertaken. The region 13HR to 23HR, -61° to -7° is searched for large extended areas of emission. 7 features occurring at intermediate galactic latitudes are found. They are interpreted as follows: one of them is the classical HII region surrounding the star Zeta Ophiuchi (l",b")=(6.7°,22.4°), and the rest are combinations of thermal and nonthermal emission from galactic features. The galactic equator profile for 24°> L > -58° is studied. It is dominated by a plateau of emission for L < -26°. This is interpreted as a combination of thermal and nonthermal radiation emitted by a ring of gas symmetric about the galactic centre with a radius of 4 - 6 kpc.
- Full Text:
- Date Issued: 1984
- Authors: Greybe, Andrew
- Date: 1984
- Subjects: Radio astronomy , Astronomical observatories , Galaxies
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5502 , http://hdl.handle.net/10962/d1007210 , Radio astronomy , Astronomical observatories , Galaxies
- Description: This thesis continues the Rhodes 2.3 GHz Survey of the Southern Sky. It consists of two parts : a data processing part and an astronomical analysis part. In the data processing part the data for the regions 4HR to 15HR, -80° to -61° and 12HR to 23HR . -27° to -7° are presented in contour map format. A beam pattern of the Hartebeesthoek telescope at 13 cm is constructed from drift scans of the radio source TAU A. This is used to investigate the data filtering techniques applied to the Rhodes Survey. It is proposed that a set of widely spaced scans which have been referred to the South Celestial Pole can provide a single calibrated baselevel for the Rhodes Survey. The observing technique and the necessary reduction programs to create a coarse grid of antenna temperatures of the Southern Sky using these observation are developed. Preliminary results for this technique are presented as a map of the region 18HR to 6HR, 90° to 30° with a 5°x5° resolution. On the astronomical side two studies are undertaken. The region 13HR to 23HR, -61° to -7° is searched for large extended areas of emission. 7 features occurring at intermediate galactic latitudes are found. They are interpreted as follows: one of them is the classical HII region surrounding the star Zeta Ophiuchi (l",b")=(6.7°,22.4°), and the rest are combinations of thermal and nonthermal emission from galactic features. The galactic equator profile for 24°> L > -58° is studied. It is dominated by a plateau of emission for L < -26°. This is interpreted as a combination of thermal and nonthermal radiation emitted by a ring of gas symmetric about the galactic centre with a radius of 4 - 6 kpc.
- Full Text:
- Date Issued: 1984
Observation and processing of 2.3 GHz radio astronomy survey data
- Authors: Jonas, Justin Leonard
- Date: 1983 , 2013-04-15
- Subjects: Radio astronomy , Southern sky (Astronomy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5505 , http://hdl.handle.net/10962/d1007280 , Radio astronomy , Southern sky (Astronomy)
- Description: The results of the second part of the Rhodes University Southern Sky Survey at 2.3GHz are presented. The area surveyed extends from 12hOO to 22hOO right ascension between declinations -63º and -24º. The observation technique and data reduction processes are analyzed. Digital data processing techniques used to enhance and display the data are dicussed. The results show that the Galactic emission extends as far as 40º latitude. Filamentary and loop-like structures are found superimposed on this general emission. Many of these features are unidentified as yet. A large region of emission is found to coincide with the Sco-Cen stellar association. A lower limit for the ionizing flux from the stars in the association is derived. All of the non-confused extragalactic sources with flux densities greater than O.5Jy are listed. The flux densities of these sources have been measured and any possible extended features are noted. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 1983
- Authors: Jonas, Justin Leonard
- Date: 1983 , 2013-04-15
- Subjects: Radio astronomy , Southern sky (Astronomy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5505 , http://hdl.handle.net/10962/d1007280 , Radio astronomy , Southern sky (Astronomy)
- Description: The results of the second part of the Rhodes University Southern Sky Survey at 2.3GHz are presented. The area surveyed extends from 12hOO to 22hOO right ascension between declinations -63º and -24º. The observation technique and data reduction processes are analyzed. Digital data processing techniques used to enhance and display the data are dicussed. The results show that the Galactic emission extends as far as 40º latitude. Filamentary and loop-like structures are found superimposed on this general emission. Many of these features are unidentified as yet. A large region of emission is found to coincide with the Sco-Cen stellar association. A lower limit for the ionizing flux from the stars in the association is derived. All of the non-confused extragalactic sources with flux densities greater than O.5Jy are listed. The flux densities of these sources have been measured and any possible extended features are noted. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 1983
Theoretical aspects of the generation of radio noise by the planet Jupiter
- Authors: Deift, Percy A
- Date: 1972
- Subjects: Jupiter (Planet) , Radio astronomy , Radio noise
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5516 , http://hdl.handle.net/10962/d1011051 , Jupiter (Planet) , Radio astronomy , Radio noise
- Description: Decameter radiation was first observed from Jupiter by Burke and Franklin (JGR 60, 213, 1955). In 1964 Bigg (Nature, 203, 1008, (1964)) found that 1o exerted a profound effect on the radiation. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency. Intro., p. 1. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency (for a review see eg. Warwick, Space Sci. Rev. &" 841 (1967)). More recent work centred around the question of how 10 modulates the emission (see the article of Carr and Gulkis (Annual Review of Astronomy and Astrophysics Vol 8 (1970)) for a detailed review).
- Full Text:
- Date Issued: 1972
- Authors: Deift, Percy A
- Date: 1972
- Subjects: Jupiter (Planet) , Radio astronomy , Radio noise
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5516 , http://hdl.handle.net/10962/d1011051 , Jupiter (Planet) , Radio astronomy , Radio noise
- Description: Decameter radiation was first observed from Jupiter by Burke and Franklin (JGR 60, 213, 1955). In 1964 Bigg (Nature, 203, 1008, (1964)) found that 1o exerted a profound effect on the radiation. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency. Intro., p. 1. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency (for a review see eg. Warwick, Space Sci. Rev. &" 841 (1967)). More recent work centred around the question of how 10 modulates the emission (see the article of Carr and Gulkis (Annual Review of Astronomy and Astrophysics Vol 8 (1970)) for a detailed review).
- Full Text:
- Date Issued: 1972
An investigation of the radio emission by the planet Jupiter on 18 Mc/s & 22 Mc/s
- Authors: Gruber, Georg Maria
- Date: 1963
- Subjects: Radio astronomy , Jupiter (Planet) -- Observations , Radio sources (Astronomy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5524 , http://hdl.handle.net/10962/d1012113 , Radio astronomy , Jupiter (Planet) -- Observations , Radio sources (Astronomy)
- Description: This thesis describes the investigation carried out of the radio noise emitted by the planet Jupiter on 18 Mc/s and 22 Mc/s. Chapter I gives a brief introduction and outlines radioastronomical as well as astronomical ideas concerning Jupiter. A detailed survey of the research done to date including some of the hypotheses formulated by previous workers is presented in Chapter II . Chapter III deals with the apparatus used in this research. Two similar sets of apparatus were used. The aerials were folded dipoles. The signals were fed to the receiver, an R 206 , via a 300 ohm impedance line. To increase the gain an extra I -F. stage was included. This gave a gain of better than a 120 dB. To match the signals into the recorder a cathode follower was used. The operating procedure appears in the fourth chapter. The results obtained are discussed and tabulated at the end of the chapter. They agree with the findings made by previous workers, within the experimental limit. Histograms of the occurrence probability versus the revised System III coordinates are presented for each frequency and compared to previous ones. The final chapter contains the author ' s interpretation of the observed effects. A model based on a radiation analogous to the Cerenkov effect is found to be not inconsistent with the available data . Ending the chapter suggestions for further research are made.
- Full Text:
- Date Issued: 1963
- Authors: Gruber, Georg Maria
- Date: 1963
- Subjects: Radio astronomy , Jupiter (Planet) -- Observations , Radio sources (Astronomy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5524 , http://hdl.handle.net/10962/d1012113 , Radio astronomy , Jupiter (Planet) -- Observations , Radio sources (Astronomy)
- Description: This thesis describes the investigation carried out of the radio noise emitted by the planet Jupiter on 18 Mc/s and 22 Mc/s. Chapter I gives a brief introduction and outlines radioastronomical as well as astronomical ideas concerning Jupiter. A detailed survey of the research done to date including some of the hypotheses formulated by previous workers is presented in Chapter II . Chapter III deals with the apparatus used in this research. Two similar sets of apparatus were used. The aerials were folded dipoles. The signals were fed to the receiver, an R 206 , via a 300 ohm impedance line. To increase the gain an extra I -F. stage was included. This gave a gain of better than a 120 dB. To match the signals into the recorder a cathode follower was used. The operating procedure appears in the fourth chapter. The results obtained are discussed and tabulated at the end of the chapter. They agree with the findings made by previous workers, within the experimental limit. Histograms of the occurrence probability versus the revised System III coordinates are presented for each frequency and compared to previous ones. The final chapter contains the author ' s interpretation of the observed effects. A model based on a radiation analogous to the Cerenkov effect is found to be not inconsistent with the available data . Ending the chapter suggestions for further research are made.
- Full Text:
- Date Issued: 1963
- «
- ‹
- 1
- ›
- »