A bioinorganic investigation of some metal complexes of the Schiff base, N,N'-bis(3-methoxysalicylaldimine)propan-2-ol
- Authors: Mopp, Estelle
- Date: 2010 , 2012-04-13
- Subjects: Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4413 , http://hdl.handle.net/10962/d1006768 , Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Description: This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
- Full Text:
- Date Issued: 2010
- Authors: Mopp, Estelle
- Date: 2010 , 2012-04-13
- Subjects: Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4413 , http://hdl.handle.net/10962/d1006768 , Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Description: This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
- Full Text:
- Date Issued: 2010
A spectroscopic study of the electronic effects on copper (II) and copper (I) complexes of ligands derived from various substituted benzyaldehyde- and cinnamaldehyde- based schiff bases
- Authors: Magwa, Nomampondo Penelope
- Date: 2010 , 2010-03-19
- Subjects: Copper -- Analysis , Schiff bases , Organometallic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4407 , http://hdl.handle.net/10962/d1006712 , Copper -- Analysis , Schiff bases , Organometallic compounds
- Description: Several Schiff base ligands, N, N‟-(aryl)benzyaldiimine ligands (R-BEN); N, N‟-(aryl)benzyaldiamine dihydrochloride ligands (R-BENH•2HCl); N, N‟-(aryl)benzyaldiamine ligands (R-BENH); N, N‟-bis(cinnamaldiimine) ligands (R-CA2EN) were synthesized for the investigation of the electronic effect of the substituents at para-position of the Schiff base ligands and their copper complexes. The synthesis of Schiff bases was carried out by reacting a series of para-substituted benzyaldehyde, and para-substituted cinnamaldehyde with ethylenediamine. The imine group of Schiff bases, N, N‟-(aryl)benzyaldiimine ligands and N, N‟-bis(cinnamaldiimine)ligands were reduced to corresponding amines with sodium borohydride in methanol These ligands, N, N‟-(aryl)benzyaldiamine ligands (H-BENH), N, N‟-bis(cinnamaldiimine)ligands (CA2EN) were reacted with copper(II) dihalide and copper(I) monohalide ions respectively to form complexes. The ligands and their complexes were analysed using elemental analyses, FT-IR spectroscopy (mid-IR), UV/vis in aprotic and protic solvents,while mass spectrometry, 1H-NMR and 13C-NMR were used to further analyse the ligands. By using substituent parameters, both the single and dual substituent parameters with the spectroscopic data obtained from the spectroscopic techiques mentioned above, it was hoped to monitor and determine whether the electronic effects (resonance or inductive effcets) was predominantly within the Schiff base ligands and copper complexes. The NMR studies with dual substituent parameters suggest that the effects of the substituents are transimitted through the ligands, via resonance effects and that the phenyl group is nonplanar with the azomethine in N, N‟-(aryl)benzyaldiimine ligands. The presence of an extra double bond in Schiff base {(N, N‟-bis(cinnamaldiimine) ligand)} altered the electron density. The UV/vis studies showed that the symmetry of the N, N‟-bis(4-R-benzyl)-1, 2-diaminoethanedihalidecopper(II) complexes were predominantly tetrahedral for both chloro and bromo complexes. The correlation studies from mid-infrared were beneficial in monitoring the effect experienced by N, N‟-(aryl)benzaldiimine ligands, the studies suggest that the inductive effect is more pronounced at the C=N.
- Full Text:
- Date Issued: 2010
- Authors: Magwa, Nomampondo Penelope
- Date: 2010 , 2010-03-19
- Subjects: Copper -- Analysis , Schiff bases , Organometallic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4407 , http://hdl.handle.net/10962/d1006712 , Copper -- Analysis , Schiff bases , Organometallic compounds
- Description: Several Schiff base ligands, N, N‟-(aryl)benzyaldiimine ligands (R-BEN); N, N‟-(aryl)benzyaldiamine dihydrochloride ligands (R-BENH•2HCl); N, N‟-(aryl)benzyaldiamine ligands (R-BENH); N, N‟-bis(cinnamaldiimine) ligands (R-CA2EN) were synthesized for the investigation of the electronic effect of the substituents at para-position of the Schiff base ligands and their copper complexes. The synthesis of Schiff bases was carried out by reacting a series of para-substituted benzyaldehyde, and para-substituted cinnamaldehyde with ethylenediamine. The imine group of Schiff bases, N, N‟-(aryl)benzyaldiimine ligands and N, N‟-bis(cinnamaldiimine)ligands were reduced to corresponding amines with sodium borohydride in methanol These ligands, N, N‟-(aryl)benzyaldiamine ligands (H-BENH), N, N‟-bis(cinnamaldiimine)ligands (CA2EN) were reacted with copper(II) dihalide and copper(I) monohalide ions respectively to form complexes. The ligands and their complexes were analysed using elemental analyses, FT-IR spectroscopy (mid-IR), UV/vis in aprotic and protic solvents,while mass spectrometry, 1H-NMR and 13C-NMR were used to further analyse the ligands. By using substituent parameters, both the single and dual substituent parameters with the spectroscopic data obtained from the spectroscopic techiques mentioned above, it was hoped to monitor and determine whether the electronic effects (resonance or inductive effcets) was predominantly within the Schiff base ligands and copper complexes. The NMR studies with dual substituent parameters suggest that the effects of the substituents are transimitted through the ligands, via resonance effects and that the phenyl group is nonplanar with the azomethine in N, N‟-(aryl)benzyaldiimine ligands. The presence of an extra double bond in Schiff base {(N, N‟-bis(cinnamaldiimine) ligand)} altered the electron density. The UV/vis studies showed that the symmetry of the N, N‟-bis(4-R-benzyl)-1, 2-diaminoethanedihalidecopper(II) complexes were predominantly tetrahedral for both chloro and bromo complexes. The correlation studies from mid-infrared were beneficial in monitoring the effect experienced by N, N‟-(aryl)benzaldiimine ligands, the studies suggest that the inductive effect is more pronounced at the C=N.
- Full Text:
- Date Issued: 2010
Complexes of the ReO³⁺/Re(CO)₃cores with multidentate N,O-Donor chelates
- Authors: Potgieter, Kim Carey
- Date: 2009
- Subjects: Rhenium , Schiff bases
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10387 , http://hdl.handle.net/10948/1225 , Rhenium , Schiff bases
- Description: This study investigates the coordination modes of multidentate N,O-donor ligands toward the [ReVO]3+ and fac-[ReI(CO)3]+ cores. The reactions of trans-[ReOX3(PPh3)2] (X = Cl, Br) with 4-aminoantipyrine (H2pap) were studied, and the complexes cis-[ReX2(pap)(H2pap)(PPh3)](ReO4) were isolated. The X-ray crystal structures show that both complexes display a distorted octahedral geometry around the central rhenium atom, and are mirror images of each other. The ligand pap is coordinated monodentately through the doubly deprotonated amino nitrogen as an imide, and H2pap acts as a neutral bidentate chelate, with coordination through the neutral amino nitrogen and the ketonic oxygen. The attempted synthesis of the potentially hexadentate Schiff base ligand 1,2-bis(2-{(Z)- [(2-hydroxyphenyl)imido]methyl}phenoxy)benzene from the condensation reaction of 2- (2-((2-aminophenoxy)methyl)benzyloxy)benzenamine and salicylaldehyde produced the zwitterion derivative (H2ono) of 2-{(Z)-[2-(hydroxyphenyl)imino]methyl}phenol. The tridentate Schiff bases (Z)-2-(2-aminobenzylideneamino)phenol (H3onn) and (Z)-2-(2- (methylthio)benzylideneamino)phenol (Hons) were prepared in a similar manner. The reaction of H2ono with trans-[ReOBr3(PPh3)2] surprisingly led to the isolation of the rhenium(III) complex [ReBr(PPh3)2(ono)], in which ono acts as a dianionic tridentate ligand. The reaction of H3onn with trans-[ReOBr3(PPh3)2] produced the imidorhenium(V) complex salt [ReBr(PPh3)2(onn)]Br, in which onn is coordinated as a trianionic tridentate imidoiminophenolate. The reaction of Hons with [Re(CO)5Br] led to the further decomposition of the Hons ligand, and the rhenium(I) product fac- [Re(CO)3(ons)(Hno)] (Hno = 2-aminophenol) was isolated, with ons coordinated as a monoanionic bidentate chelate (with a free SCH3 group), and Hno present as a neutral monodentate ligand with coordination through the amino nitrogen atom. Abstract Nelson Mandela Metropolitan University vi The reactions of the potentially hexadentate ligand N,N’-{ethane-1,2- diylbis[nitrilomethylidenebenzene-1,2-diyl]}bis(2-aminobenzeneimine) (H2ted) with rhenium(V) starting materials resulted in the decomposition of the H2ted molecule to give different coordinated multidentate ligands coordinated to the rhenium(V) centers. In the reaction of H2ted with trans-[ReOBr3(PPh3)2] in ethanol, the highly unusual ‘3+3’ complex cation [Re(tnn)(Htnn)]Br2 was isolated, in which tnn is coordinated as a tridentate imido-imino-amine, and Htnn is present as a tridentate monoanionic amidoimino- amine chelate (H2tnn = N-(2-aminophenylmethylidene)ethane-1,2-diamine). With trans-[ReO2(py)4]Cl as starting material, the neutral complex [ReO(dne)] was found, in which the tetradentate chelate dne acts as a triamido-imine. The reaction of cis- [ReO2I(PPh3)2] with H2ted led to the formation of the monocationic complex salt [ReO(ane)]PF6, with ane acting as a tetradentate dianionic diamidodiimine (H2ane = N,N’-bis[(2-aminophenyl)methylidene] ethane-1,2-diamine). The seven-coordinate rhenium(III) complex cation [Re(dhp)(PPh3)2]+ (H2dhp = 2,6-bis(2- hydroxyphenyliminomethyl)pyridine) was isolated as the iodide salt from the reaction of cis-[ReO2I(PPh3)2] with H2dhp in ethanol and as the perrhenate salt from the reaction of trans-[ReOBr3(PPh3)2] with H2dhp in methanol. Both products result from a disproportionation reaction with perrhenate also being produced in the process. The complex fac-[Re(CO)3(H2dhp)Br] was prepared from [Re(CO)5Br] and H2dhp in toluene, where the H2dhp ligand acts as a neutral bidentate NN-donor chelate. The metal is coordinated to three carbonyl donors in a facial orientation, to a neutral imino nitrogen, a pyridinic nitrogen and a bromide.
- Full Text:
- Date Issued: 2009
- Authors: Potgieter, Kim Carey
- Date: 2009
- Subjects: Rhenium , Schiff bases
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10387 , http://hdl.handle.net/10948/1225 , Rhenium , Schiff bases
- Description: This study investigates the coordination modes of multidentate N,O-donor ligands toward the [ReVO]3+ and fac-[ReI(CO)3]+ cores. The reactions of trans-[ReOX3(PPh3)2] (X = Cl, Br) with 4-aminoantipyrine (H2pap) were studied, and the complexes cis-[ReX2(pap)(H2pap)(PPh3)](ReO4) were isolated. The X-ray crystal structures show that both complexes display a distorted octahedral geometry around the central rhenium atom, and are mirror images of each other. The ligand pap is coordinated monodentately through the doubly deprotonated amino nitrogen as an imide, and H2pap acts as a neutral bidentate chelate, with coordination through the neutral amino nitrogen and the ketonic oxygen. The attempted synthesis of the potentially hexadentate Schiff base ligand 1,2-bis(2-{(Z)- [(2-hydroxyphenyl)imido]methyl}phenoxy)benzene from the condensation reaction of 2- (2-((2-aminophenoxy)methyl)benzyloxy)benzenamine and salicylaldehyde produced the zwitterion derivative (H2ono) of 2-{(Z)-[2-(hydroxyphenyl)imino]methyl}phenol. The tridentate Schiff bases (Z)-2-(2-aminobenzylideneamino)phenol (H3onn) and (Z)-2-(2- (methylthio)benzylideneamino)phenol (Hons) were prepared in a similar manner. The reaction of H2ono with trans-[ReOBr3(PPh3)2] surprisingly led to the isolation of the rhenium(III) complex [ReBr(PPh3)2(ono)], in which ono acts as a dianionic tridentate ligand. The reaction of H3onn with trans-[ReOBr3(PPh3)2] produced the imidorhenium(V) complex salt [ReBr(PPh3)2(onn)]Br, in which onn is coordinated as a trianionic tridentate imidoiminophenolate. The reaction of Hons with [Re(CO)5Br] led to the further decomposition of the Hons ligand, and the rhenium(I) product fac- [Re(CO)3(ons)(Hno)] (Hno = 2-aminophenol) was isolated, with ons coordinated as a monoanionic bidentate chelate (with a free SCH3 group), and Hno present as a neutral monodentate ligand with coordination through the amino nitrogen atom. Abstract Nelson Mandela Metropolitan University vi The reactions of the potentially hexadentate ligand N,N’-{ethane-1,2- diylbis[nitrilomethylidenebenzene-1,2-diyl]}bis(2-aminobenzeneimine) (H2ted) with rhenium(V) starting materials resulted in the decomposition of the H2ted molecule to give different coordinated multidentate ligands coordinated to the rhenium(V) centers. In the reaction of H2ted with trans-[ReOBr3(PPh3)2] in ethanol, the highly unusual ‘3+3’ complex cation [Re(tnn)(Htnn)]Br2 was isolated, in which tnn is coordinated as a tridentate imido-imino-amine, and Htnn is present as a tridentate monoanionic amidoimino- amine chelate (H2tnn = N-(2-aminophenylmethylidene)ethane-1,2-diamine). With trans-[ReO2(py)4]Cl as starting material, the neutral complex [ReO(dne)] was found, in which the tetradentate chelate dne acts as a triamido-imine. The reaction of cis- [ReO2I(PPh3)2] with H2ted led to the formation of the monocationic complex salt [ReO(ane)]PF6, with ane acting as a tetradentate dianionic diamidodiimine (H2ane = N,N’-bis[(2-aminophenyl)methylidene] ethane-1,2-diamine). The seven-coordinate rhenium(III) complex cation [Re(dhp)(PPh3)2]+ (H2dhp = 2,6-bis(2- hydroxyphenyliminomethyl)pyridine) was isolated as the iodide salt from the reaction of cis-[ReO2I(PPh3)2] with H2dhp in ethanol and as the perrhenate salt from the reaction of trans-[ReOBr3(PPh3)2] with H2dhp in methanol. Both products result from a disproportionation reaction with perrhenate also being produced in the process. The complex fac-[Re(CO)3(H2dhp)Br] was prepared from [Re(CO)5Br] and H2dhp in toluene, where the H2dhp ligand acts as a neutral bidentate NN-donor chelate. The metal is coordinated to three carbonyl donors in a facial orientation, to a neutral imino nitrogen, a pyridinic nitrogen and a bromide.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »