The perceived impact of soil erosion on food security in the upper and lower areas of Didimana in the Eastern Cape of South Africa
- Authors: Ighodaro, Ikponmwosa David
- Date: 2012
- Subjects: Soil erosion -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Sustainable agriculture -- South Africa -- Eastern Cape , Agricultural extension work -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc Agric (Agricultural Economics)
- Identifier: vital:11194 , http://hdl.handle.net/10353/d1006781 , Soil erosion -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Sustainable agriculture -- South Africa -- Eastern Cape , Agricultural extension work -- South Africa -- Eastern Cape
- Description: Due to the particular nature of accelerated soil erosion, its impact on food security is usually very intense. The impact starts first on the farmer, and then to his/ her environment. This is why soil erosion, when unchecked, is very devastating. Therefore this study was set to evaluate the perceived impact of soil erosion on food security in the Upper and Lower Areas of Didimana, Eastern Cape of South Africa, and the role farmers’ adoption behaviours play in the interaction. Three specific objectives were put forward by the study, vis-à-vis: (1) to establish farmers’ perceptions on the impact of soil erosion on food security of the study area; (2) to establish farmers’ innovation adoption behaviour with respect to soil erosion control in the study area; and (3) to establish farmers’ perceptions on the impact of extension activities with respect to soil erosion-control in the study area. The central argument of discussion is that soil erosion like every other agricultural problem, is the result of farmers’ non-adoption or inappropriate adoption of improved and recommended soil management technologies in the study area. The survey method of research was adopted for the study, where data were collected, using a well structured questionnaire, from a total of 60 farmers in the study area, through a simple random sampling process. Farmers’ perception suggested that the impact of soil erosion in their area is severe. This severity is demonstrated firstly in the form of climate change, as the time of rain in their area is gradually changing, and thus changing their time of cropping. Similarly the livelihoods of farmers are being negatively affected, as farmers’ crops, livestock, and even household feeding are being affected. More so, findings indicate that most farmers now plant fewer crops and there is an estimation of crop loss by most farmers of well between 21-60 percent of crops every year. Farmers’ perception further revealed that due to soil erosion, over 50 percent of farmers are unsustainable and a total of 71.7 percent of farmers’ population admitted that the amount of food available for their households is being severely affected. In virtually every sphere of human endeavours improved technologies have been developed to solve human problems, but the main reason problems like soil erosion is still very evident is the fact of farmers’ non-adoption or inappropriate adoption of specific recommended technologies. In the study area, the role of farmers’ adoption behaviour in the interaction of the impact of soil erosion on food security was very prominent. Findings indicate that despite the presence of certain recommended soil management technologies in the study area, majority of farmers do not use them neither extension advices. Moreover their satisfaction with those technologies was found to be low, which could be an explanation why they do not use them. For innovation to be adopted, rejected or utilized inappropriately, the effectiveness and performance of agricultural extension, as well as farmers’ perception play a great role. Thus in the study area, farmers’ perception on extension effectiveness indicates that extension hardly talk about soil erosion and its control during times of their visit. Similarly, farmers’ rating for extension services and advices was as well very low (23.4 percent). In fact, a comparison of farmers’ traditional methods of soil erosion control with extension recommendations (53.4 percent) indicated that farmers perceive their local methods of more importance than extension methods. In the same vein, majority of farmers in the area indicated that extension officers are inadequate in their jobs. Reasons offered range from issues of unreliability, lack of regular visits, communication problems, less attention for crop farming, and other reasons such as extension being unconcerned for subsistence farmers, as well as the fact that they focus more on cooperatives. In all, the findings of the descriptive statistics reveal that the impact of soil erosion on food security in the study area is very significant, and the results of the linear regression model of relationships in the study reveal that soil erosion relates positively with age of farmers, their product quality, and their sustainability. In a similar note, the innovation adoption behaviours of farmers was also found to be positively related to farm yield and food accessibility. Thus showing that innovation adoption behaviour of farmers in the interaction of soil erosion and food security in the study area is significant. Therefore, efforts should be geared toward improving factors that increases yield and accessibility of farmers to serve as boosters of farmers’ motivation towards the adoption of appropriate soil management technologies in their area.
- Full Text:
- Date Issued: 2012
- Authors: Ighodaro, Ikponmwosa David
- Date: 2012
- Subjects: Soil erosion -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Sustainable agriculture -- South Africa -- Eastern Cape , Agricultural extension work -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc Agric (Agricultural Economics)
- Identifier: vital:11194 , http://hdl.handle.net/10353/d1006781 , Soil erosion -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Sustainable agriculture -- South Africa -- Eastern Cape , Agricultural extension work -- South Africa -- Eastern Cape
- Description: Due to the particular nature of accelerated soil erosion, its impact on food security is usually very intense. The impact starts first on the farmer, and then to his/ her environment. This is why soil erosion, when unchecked, is very devastating. Therefore this study was set to evaluate the perceived impact of soil erosion on food security in the Upper and Lower Areas of Didimana, Eastern Cape of South Africa, and the role farmers’ adoption behaviours play in the interaction. Three specific objectives were put forward by the study, vis-à-vis: (1) to establish farmers’ perceptions on the impact of soil erosion on food security of the study area; (2) to establish farmers’ innovation adoption behaviour with respect to soil erosion control in the study area; and (3) to establish farmers’ perceptions on the impact of extension activities with respect to soil erosion-control in the study area. The central argument of discussion is that soil erosion like every other agricultural problem, is the result of farmers’ non-adoption or inappropriate adoption of improved and recommended soil management technologies in the study area. The survey method of research was adopted for the study, where data were collected, using a well structured questionnaire, from a total of 60 farmers in the study area, through a simple random sampling process. Farmers’ perception suggested that the impact of soil erosion in their area is severe. This severity is demonstrated firstly in the form of climate change, as the time of rain in their area is gradually changing, and thus changing their time of cropping. Similarly the livelihoods of farmers are being negatively affected, as farmers’ crops, livestock, and even household feeding are being affected. More so, findings indicate that most farmers now plant fewer crops and there is an estimation of crop loss by most farmers of well between 21-60 percent of crops every year. Farmers’ perception further revealed that due to soil erosion, over 50 percent of farmers are unsustainable and a total of 71.7 percent of farmers’ population admitted that the amount of food available for their households is being severely affected. In virtually every sphere of human endeavours improved technologies have been developed to solve human problems, but the main reason problems like soil erosion is still very evident is the fact of farmers’ non-adoption or inappropriate adoption of specific recommended technologies. In the study area, the role of farmers’ adoption behaviour in the interaction of the impact of soil erosion on food security was very prominent. Findings indicate that despite the presence of certain recommended soil management technologies in the study area, majority of farmers do not use them neither extension advices. Moreover their satisfaction with those technologies was found to be low, which could be an explanation why they do not use them. For innovation to be adopted, rejected or utilized inappropriately, the effectiveness and performance of agricultural extension, as well as farmers’ perception play a great role. Thus in the study area, farmers’ perception on extension effectiveness indicates that extension hardly talk about soil erosion and its control during times of their visit. Similarly, farmers’ rating for extension services and advices was as well very low (23.4 percent). In fact, a comparison of farmers’ traditional methods of soil erosion control with extension recommendations (53.4 percent) indicated that farmers perceive their local methods of more importance than extension methods. In the same vein, majority of farmers in the area indicated that extension officers are inadequate in their jobs. Reasons offered range from issues of unreliability, lack of regular visits, communication problems, less attention for crop farming, and other reasons such as extension being unconcerned for subsistence farmers, as well as the fact that they focus more on cooperatives. In all, the findings of the descriptive statistics reveal that the impact of soil erosion on food security in the study area is very significant, and the results of the linear regression model of relationships in the study reveal that soil erosion relates positively with age of farmers, their product quality, and their sustainability. In a similar note, the innovation adoption behaviours of farmers was also found to be positively related to farm yield and food accessibility. Thus showing that innovation adoption behaviour of farmers in the interaction of soil erosion and food security in the study area is significant. Therefore, efforts should be geared toward improving factors that increases yield and accessibility of farmers to serve as boosters of farmers’ motivation towards the adoption of appropriate soil management technologies in their area.
- Full Text:
- Date Issued: 2012
The influence of Acacia Mearnsii invasion on soil properties in the Kouga Mountains, Eastern Cape, South Africa
- Van der Waal, Benjamin Cornelius Wentsel
- Authors: Van der Waal, Benjamin Cornelius Wentsel
- Date: 2010
- Subjects: Acacia mearnsii -- South Africa , Wattles (Plants) -- South Africa , Soil erosion -- South Africa -- Eastern Cape , Conservation of natural resources -- South Africa , Biological invasions -- South Africa -- Eastern Cape , Alien plants -- South Africa -- Eastern Cape , Invasive plants -- South Africa -- Eastern Cape , Biogeography -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Soil moisture -- South Africa -- Eastern Cape , Soils -- Sodium content -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4839 , http://hdl.handle.net/10962/d1005515 , Acacia mearnsii -- South Africa , Wattles (Plants) -- South Africa , Soil erosion -- South Africa -- Eastern Cape , Conservation of natural resources -- South Africa , Biological invasions -- South Africa -- Eastern Cape , Alien plants -- South Africa -- Eastern Cape , Invasive plants -- South Africa -- Eastern Cape , Biogeography -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Soil moisture -- South Africa -- Eastern Cape , Soils -- Sodium content -- South Africa -- Eastern Cape
- Description: The invasion of Acacia mearnsii in the Kouga catchment, Eastern Cape, South Africa, has various negative impacts on the ecosystem. These impacts include: reduced species richness, increased water use, increased nutrients and increased N cycling rates. The native shrubby fynbos vegetation has adapted to the acidic nutrient poor soils and Mediterranean climate of the Kouga Mountains. Fynbos, however, is currently being out competed by the much taller Acacia mearnsii trees, due to their competitive nature and ability to fix nitrogen, thereby enriching the soil. The invaded sections of the valley bottoms and lower hill slopes are characterised by an almost complete monoculture of Acacia mearnsii, with very few fynbos species still present. The Department of Water and Environmental Affairs sponsored Working for Water programme started clearing Acacia mearnsii in 1996 in the Kouga Mountains. Cleared sites have remained bare for long periods, indicating that soil properties are not favourable for indigenous propagule re-establishment. The aim of this research was to assess how A. mearnsii invasion and clearing affect fynbos recovery through its impact on soils. This was done by characterising vegetation and soil properties on fynbos, infested and cleared slopes. Vegetation cover for various growth forms was determined and a species list was compiled for each plot. The slope angle, surface hardness, litter cover, bare ground cover and soil depth were measured in the field, whereas water repellency, particle size and the chemical composition were measured in the laboratory. Furthermore, the plant establishment capacity of soils from fynbos, infested and cleared slopes was calculated. This was done by germinating fynbos seeds and growing fynbos plants in soils from the various slopes. The effect that invasion and clearing has on soil erosion was quantified using erosion plots on fynbos, infested and cleared slopes. The invasion and clearing of Acacia mearnsii led to an increase in soil nutrients, especially nitrogen, phosphorus, potassium, carbon and manganese. Furthermore, soils became more acidic, with increased water repellency and reduced surface hardness. The vegetation changed to a tree-dominated structure, replacing the native species. Native plant germination was relatively unaffected by invasion and clearing, with an increase in germination just after clearing. Plant growth of a native grass, Themeda triandra, and herb, Helichrysum umbraculigerum, has increased on soils from cleared slopes. This study showed that soil movement increased on slopes which are invaded and cleared of Acacia mearnsii, with erosion rates doubling on invaded slopes
- Full Text:
- Date Issued: 2010
- Authors: Van der Waal, Benjamin Cornelius Wentsel
- Date: 2010
- Subjects: Acacia mearnsii -- South Africa , Wattles (Plants) -- South Africa , Soil erosion -- South Africa -- Eastern Cape , Conservation of natural resources -- South Africa , Biological invasions -- South Africa -- Eastern Cape , Alien plants -- South Africa -- Eastern Cape , Invasive plants -- South Africa -- Eastern Cape , Biogeography -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Soil moisture -- South Africa -- Eastern Cape , Soils -- Sodium content -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4839 , http://hdl.handle.net/10962/d1005515 , Acacia mearnsii -- South Africa , Wattles (Plants) -- South Africa , Soil erosion -- South Africa -- Eastern Cape , Conservation of natural resources -- South Africa , Biological invasions -- South Africa -- Eastern Cape , Alien plants -- South Africa -- Eastern Cape , Invasive plants -- South Africa -- Eastern Cape , Biogeography -- South Africa -- Eastern Cape , Soil management -- South Africa -- Eastern Cape , Soil moisture -- South Africa -- Eastern Cape , Soils -- Sodium content -- South Africa -- Eastern Cape
- Description: The invasion of Acacia mearnsii in the Kouga catchment, Eastern Cape, South Africa, has various negative impacts on the ecosystem. These impacts include: reduced species richness, increased water use, increased nutrients and increased N cycling rates. The native shrubby fynbos vegetation has adapted to the acidic nutrient poor soils and Mediterranean climate of the Kouga Mountains. Fynbos, however, is currently being out competed by the much taller Acacia mearnsii trees, due to their competitive nature and ability to fix nitrogen, thereby enriching the soil. The invaded sections of the valley bottoms and lower hill slopes are characterised by an almost complete monoculture of Acacia mearnsii, with very few fynbos species still present. The Department of Water and Environmental Affairs sponsored Working for Water programme started clearing Acacia mearnsii in 1996 in the Kouga Mountains. Cleared sites have remained bare for long periods, indicating that soil properties are not favourable for indigenous propagule re-establishment. The aim of this research was to assess how A. mearnsii invasion and clearing affect fynbos recovery through its impact on soils. This was done by characterising vegetation and soil properties on fynbos, infested and cleared slopes. Vegetation cover for various growth forms was determined and a species list was compiled for each plot. The slope angle, surface hardness, litter cover, bare ground cover and soil depth were measured in the field, whereas water repellency, particle size and the chemical composition were measured in the laboratory. Furthermore, the plant establishment capacity of soils from fynbos, infested and cleared slopes was calculated. This was done by germinating fynbos seeds and growing fynbos plants in soils from the various slopes. The effect that invasion and clearing has on soil erosion was quantified using erosion plots on fynbos, infested and cleared slopes. The invasion and clearing of Acacia mearnsii led to an increase in soil nutrients, especially nitrogen, phosphorus, potassium, carbon and manganese. Furthermore, soils became more acidic, with increased water repellency and reduced surface hardness. The vegetation changed to a tree-dominated structure, replacing the native species. Native plant germination was relatively unaffected by invasion and clearing, with an increase in germination just after clearing. Plant growth of a native grass, Themeda triandra, and herb, Helichrysum umbraculigerum, has increased on soils from cleared slopes. This study showed that soil movement increased on slopes which are invaded and cleared of Acacia mearnsii, with erosion rates doubling on invaded slopes
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »