Geological factors affecting the grade and tonnage of sandstone uranium deposits
- Authors: Holliman, K A
- Date: 1981 , 2013-03-19
- Subjects: Uranium ores , Sandstone , Geology, Economic
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5009 , http://hdl.handle.net/10962/d1005914 , Uranium ores , Sandstone , Geology, Economic
- Description: The largest known reserves of uranium are found in sandstone deposits, in the form of roll-front, peneconcordant and stacked types. Drilling on spacings of between 50 m and 5 m centres is the current method of attempting to delineate such ore bodies but because of the apparent random distribution of the mineralization there is a large degree of uncertainty in these predictions. Even on drilling grids of 3,5 m centres the uncertainty in predicting the distribution of stringer ore in roll front mineralization is still 100 per cent. (Sandefur & Grant 1980). Because of escalating costs it is becoming increasingly less economically feasible to delineate bodies of this nature in this manner and much more reliance will have to be placed on the geologist's interpretation of ore distribution when calculating ore reserves. The grade and tonnage of a sandstone uranium deposit can only be calculated with some degree of confidence if the processes forming the ore body are fully understood. The aim of this review is to examine the factors governing the formation and geometry of a sandstone body, the mobility and fixation of uranium and to establish criteria which will enable a more confident prediction to be made of the distribution of sand bodies and the distribution of the mineralization within them
- Full Text:
- Date Issued: 1981
- Authors: Holliman, K A
- Date: 1981 , 2013-03-19
- Subjects: Uranium ores , Sandstone , Geology, Economic
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5009 , http://hdl.handle.net/10962/d1005914 , Uranium ores , Sandstone , Geology, Economic
- Description: The largest known reserves of uranium are found in sandstone deposits, in the form of roll-front, peneconcordant and stacked types. Drilling on spacings of between 50 m and 5 m centres is the current method of attempting to delineate such ore bodies but because of the apparent random distribution of the mineralization there is a large degree of uncertainty in these predictions. Even on drilling grids of 3,5 m centres the uncertainty in predicting the distribution of stringer ore in roll front mineralization is still 100 per cent. (Sandefur & Grant 1980). Because of escalating costs it is becoming increasingly less economically feasible to delineate bodies of this nature in this manner and much more reliance will have to be placed on the geologist's interpretation of ore distribution when calculating ore reserves. The grade and tonnage of a sandstone uranium deposit can only be calculated with some degree of confidence if the processes forming the ore body are fully understood. The aim of this review is to examine the factors governing the formation and geometry of a sandstone body, the mobility and fixation of uranium and to establish criteria which will enable a more confident prediction to be made of the distribution of sand bodies and the distribution of the mineralization within them
- Full Text:
- Date Issued: 1981
A review of unconformity-type uranium deposits
- Authors: Dabrowski, F A
- Date: 1980 , 2013-04-02
- Subjects: Uranium ores , Mineralogy , Geochemistry , Unconformities (Geology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4917 , http://hdl.handle.net/10962/d1003289 , Uranium ores , Mineralogy , Geochemistry , Unconformities (Geology)
- Description: Intense interest in uranium in the past decade has led to the discovery of new kinds of deposits of which the so-called unconformity-type are economically the most important. Presently known occurrences are restricted to Australia and Canada where they are characterized chiefly by their spatial relationship to Lower-Middle Proterozoic unconformities. Other common features include similar host-rock assemblages, structural controls, alteration, mineralogy, age relationships and fluid-inclusion data. Similar characteristics in other vein-type deposits, including those of the Beaverlodge district in Canada, deposits in France and Portugal, and the Schwartzwalder mine in the United States, suggest that they may also be of the unconformity-type. Various interpretations of the geological relationships of unconformity-type deposits have resulted in a number of genetic hypotheses, which require different exploration philosophies. Nearsurface supergene processes are considered to be most important although other mechanisms may have played contributing roles in the concentration of uranium. There is considerable potential for further discoveries of unconformity-type uranium deposits throughout the world. No such deposits are yet known in southern Africa although several favourable Precambrian unconformities are present.
- Full Text:
- Date Issued: 1980
- Authors: Dabrowski, F A
- Date: 1980 , 2013-04-02
- Subjects: Uranium ores , Mineralogy , Geochemistry , Unconformities (Geology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4917 , http://hdl.handle.net/10962/d1003289 , Uranium ores , Mineralogy , Geochemistry , Unconformities (Geology)
- Description: Intense interest in uranium in the past decade has led to the discovery of new kinds of deposits of which the so-called unconformity-type are economically the most important. Presently known occurrences are restricted to Australia and Canada where they are characterized chiefly by their spatial relationship to Lower-Middle Proterozoic unconformities. Other common features include similar host-rock assemblages, structural controls, alteration, mineralogy, age relationships and fluid-inclusion data. Similar characteristics in other vein-type deposits, including those of the Beaverlodge district in Canada, deposits in France and Portugal, and the Schwartzwalder mine in the United States, suggest that they may also be of the unconformity-type. Various interpretations of the geological relationships of unconformity-type deposits have resulted in a number of genetic hypotheses, which require different exploration philosophies. Nearsurface supergene processes are considered to be most important although other mechanisms may have played contributing roles in the concentration of uranium. There is considerable potential for further discoveries of unconformity-type uranium deposits throughout the world. No such deposits are yet known in southern Africa although several favourable Precambrian unconformities are present.
- Full Text:
- Date Issued: 1980
- «
- ‹
- 1
- ›
- »