- Title
- Numerical relativity on cosmological past null cones
- Creator
- Van der Walt, Petrus Johannes
- ThesisAdvisor
- Bishop, Nigel
- Subject
- Cosmology Numerical calculations General relativity (Physics) -- Mathematics Einstein field equations Gravity Gravitational waves Horizon
- Date
- 2013
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- vital:5396
- Identifier
- http://hdl.handle.net/10962/d1002959
- Description
- The observational approach to cosmology is the endeavour to reconstruct the geometry of the Universe using only data that is theoretically verifiable within the causal boundaries of a cosmological observer. Using this approach, it was shown in [36] that given ideal cosmological observations, the only essential assumption necessary to determine the geometry of the Universe is a theory of gravity. Assuming General Relativity, the full set of Einstein field equations (EFEs) can be used to reconstruct the geometry of the Universe using direct observations on the past null cone (PNC) as initial conditions. Observationally and theoretically this is a very ambitious task and therefore, current developments have been restricted to spherically symmetric dust models while only relaxing the usual assumption of homogeneity in the radial direction. These restricted models are important for the development of theoretical foundations and also useful as verification models since they avoid the circularity of verifying what has already been assumed. The work presented in this thesis is the development of such a model where numerical relativity (NR) is used to simulate the observable universe. Similar to the work of Ellis and co-workers [36], a reference frame based on the PNC is used. The reference frame used here, however, is based on that of the characteristic formalism of NR, which has developed for calculating the propagation of gravitational waves. This provides a formalism that is well established in NR, making the use of existing algorithms possible. The Bondi-Sachs coordinates of the characteristic formalism is, however, not suitable for calculations beyond the observer apparent horizon (AH) since the diameter distance used as a radial coordinate becomes multi-valued when the cosmological PNC reconverges in the history of a universe, smaller in the past. With this taken into consideration, the Bondi-Sachs characteristic formalism is implemented for cosmology and the problem approaching the AH is investigated. Further developments address the limitations approaching the AH by introducing a metric based on the Bondi-Sachs metric where the radial coordinate is replaced with an affine parameter. The model is derived with a cosmological constant Λ incorporated into the EFEs where Λ is taken as a parameter of the theory of gravity rather than as a matter source term. Similar to the conventional characteristic formalism, this model consists of a system of differential equations for numerically evolving the EFEs as a characteristic initial value problem (CIVP). A numerical code implemented for the method has been found to be second order convergent. This code enables simulations of different models given identical data on the initial null cone and provides a method to investigate their physical consistency within the causally connected region of our current PNC. These developments closely follow existing 3D schemes developed for gravitational wave simulations, which should make it natural to extend the affine CIVP beyond spherical symmetric simulations. The developments presented in this thesis is an extended version of two papers published earlier.
- Format
- 174 leaves, pdf
- Publisher
- Rhodes University, Faculty of Science, Mathematics
- Language
- English
- Rights
- Van der Walt, Petrus Johannes
- Hits: 1032
- Visitors: 1027
- Downloads: 127
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCEPDF | 1 MB | Adobe Acrobat PDF | View Details |