Interaction between the root-feeding beetle, Longitarsus bethae (Coleoptera: Chrysomelidae) and the root-knot nematode, Meloidogyne javanica (Nematoda: Heteroderidae): Implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa
- Authors: Musedeli, Jufter
- Date: 2019
- Subjects: Insect-plant relationships , Insects -- Host plants , Flea beetles , Symbiosis , Longitarsus , Chrysomelidae , Lantana camara -- Biological control -- South Africa , Heteroderidae , Root-knot nematodes , Weeds -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71130 , vital:29788
- Description: Plants often are simultaneously attacked by several herbivores that can affect each other’s performance, and their interaction may affect their host plant fitness. The current study was conducted to determine the interaction between the root-feeding beetle, Longitarsus bethae Savini & Escalona (Coleoptera: Chrysomelidae) and a root-knot nematode, Meloidogyne javanica (Treub) Chitwood (Tylenchida: Heteroderidae), with implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa. The studies were conducted under quarantine conditions at the Agricultural Research Council-PHP, Roodeplaat, Pretoria, South Africa. Specifically, the study determined; (i) whether root damage by the flea beetle enhanced infection by M. javanica, (ii) whether L. camara roots infected with the nematode enhanced the performance of the beetle, (iii) whether single or combined effect of the two organisms (i.e. L. bethae and M. javanica) had an overall effect on the growth and biomass of their shared host, L. camara, and (iv) the susceptibility of 10 L. camara varieties that are commonly found in South Africa to M. javanica. The study found that galling on the roots of L. camara by the nematode occurs at the highest inoculation of 300 eggs of L. bethae per plant, and no galling occurred at inoculation of 200 eggs per plant and below. The findings also showed that L. bethae performed better on M. javanica-infected than on healthy L. camara roots, and that more L. bethae adult progeny with slightly bigger body size emerged from M. javanica-infected, than from healthy plants. Fresh weight (galls) of plant roots from treatments where both species (i.e., L. bethae and M. javanica) were combined was significantly higher than that from plants infected with the nematode only, suggesting that the combination of both species induces more galling than the nematode does alone. The above-ground dry biomass was significantly lower both in combined and M. javanica only treatments, than in L. bethae only treatment. The study also found that selected L. camara varieties were infected with M. javanica, albeit at varying degrees of infection. Among the 10 L. camara varieties, Orange Red OR 015 was the most susceptible. Other susceptible varieties included Light Pink 009 LP, Total Pink 021 TP and Dark Pink 018 DP, and these, together with variety Orange Red OR 015, constituted 40% of the L. camara varieties evaluated in the current study. Fifty percent of the varieties displayed slight to moderate susceptibility to M. javanica, while 10% displayed lack of susceptibility. The study concluded that the symbiotic relationship between L. bethae and M. javanica was mutual, resulting in increase in the fitness of the beetle. The combined herbivory by L. bethae and M. javanica was also found to be additive on one of the most common varieties of L. camara in South Africa, and therefore co-infestation by both species might enhance the biological control of this weed in South Africa. The study further concluded that the suitability of some invasive L. camara cultivars such as Light Pink 009 LP and Orange Red 015 OR for M. javanica, might also contribute towards biological control of this weed in South Africa, particularly in areas where the two herbivores species co-exist.
- Full Text:
- Authors: Musedeli, Jufter
- Date: 2019
- Subjects: Insect-plant relationships , Insects -- Host plants , Flea beetles , Symbiosis , Longitarsus , Chrysomelidae , Lantana camara -- Biological control -- South Africa , Heteroderidae , Root-knot nematodes , Weeds -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71130 , vital:29788
- Description: Plants often are simultaneously attacked by several herbivores that can affect each other’s performance, and their interaction may affect their host plant fitness. The current study was conducted to determine the interaction between the root-feeding beetle, Longitarsus bethae Savini & Escalona (Coleoptera: Chrysomelidae) and a root-knot nematode, Meloidogyne javanica (Treub) Chitwood (Tylenchida: Heteroderidae), with implications for the biological control of Lantana camara L. (Verbenaceae) in South Africa. The studies were conducted under quarantine conditions at the Agricultural Research Council-PHP, Roodeplaat, Pretoria, South Africa. Specifically, the study determined; (i) whether root damage by the flea beetle enhanced infection by M. javanica, (ii) whether L. camara roots infected with the nematode enhanced the performance of the beetle, (iii) whether single or combined effect of the two organisms (i.e. L. bethae and M. javanica) had an overall effect on the growth and biomass of their shared host, L. camara, and (iv) the susceptibility of 10 L. camara varieties that are commonly found in South Africa to M. javanica. The study found that galling on the roots of L. camara by the nematode occurs at the highest inoculation of 300 eggs of L. bethae per plant, and no galling occurred at inoculation of 200 eggs per plant and below. The findings also showed that L. bethae performed better on M. javanica-infected than on healthy L. camara roots, and that more L. bethae adult progeny with slightly bigger body size emerged from M. javanica-infected, than from healthy plants. Fresh weight (galls) of plant roots from treatments where both species (i.e., L. bethae and M. javanica) were combined was significantly higher than that from plants infected with the nematode only, suggesting that the combination of both species induces more galling than the nematode does alone. The above-ground dry biomass was significantly lower both in combined and M. javanica only treatments, than in L. bethae only treatment. The study also found that selected L. camara varieties were infected with M. javanica, albeit at varying degrees of infection. Among the 10 L. camara varieties, Orange Red OR 015 was the most susceptible. Other susceptible varieties included Light Pink 009 LP, Total Pink 021 TP and Dark Pink 018 DP, and these, together with variety Orange Red OR 015, constituted 40% of the L. camara varieties evaluated in the current study. Fifty percent of the varieties displayed slight to moderate susceptibility to M. javanica, while 10% displayed lack of susceptibility. The study concluded that the symbiotic relationship between L. bethae and M. javanica was mutual, resulting in increase in the fitness of the beetle. The combined herbivory by L. bethae and M. javanica was also found to be additive on one of the most common varieties of L. camara in South Africa, and therefore co-infestation by both species might enhance the biological control of this weed in South Africa. The study further concluded that the suitability of some invasive L. camara cultivars such as Light Pink 009 LP and Orange Red 015 OR for M. javanica, might also contribute towards biological control of this weed in South Africa, particularly in areas where the two herbivores species co-exist.
- Full Text:
The evaluation of Phenrica sp.2 (Coleoptera: Chrysomelidae: Alticinae), as a possible biological control agent for Madeira vine, Anredera cordifolia (Ten.) Steenis in South Africa
- Authors: Van der Westhuizen, Liamé
- Date: 2006
- Subjects: Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5689 , http://hdl.handle.net/10962/d1005375 , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Description: Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief. A biological control programme was therefore initiated in 2003. Cf Phenrica sp. 2 (Coleoptera: Chrysomelidae: Alticinae), was field collected from A. cordifolia in Brazil, SSW of Cascavel in the Paraná Province during a survey in November 2003. Eggs are laid in groups of 16 with the average fertility rate being 89%. After going though three larval instars, the larvae pupate in the soil with the adults eclosing after a period of 17 days. The total developmental time for a generation from egg to egg ranges between 7-8 weeks. Biological traits that favour the flea beetle as a possible biological control agent include long-lived adults (up to 5 months) and multiple generations during the summer period. Both adults and larvae feed extensively on leaves and stems and although developmental rates will slow down during the winter period, no indication of a definite diapause was found under the prevailing laboratory conditions. After completing the larval no-choice trials with twenty-six plant species from 14 plant families Phenrica sp. 2 proved to be adequately host specific, as larval development was only supported by 3 Basellaceae species (including the control A. cordifolia) and one Portulacaceae species. All of these are introduced species in South Africa. The only indigenous Basella species could not be tested as it has a very marginal distribution, and because it’s inconspicuous nature, it is seldom seen or collected. Adult multi-choice trials were restricted to species that could sustain larval development to give some indication of the acceptability of these species for adult feeding and oviposition. Although adult feeding was initially concentrated on B. alba, the oviposition preference was clear-cut as females only oviposited on A. cordifolia. In order to quantify the impact of Phenrica sp. 2 on plant biomass and to assess the incidence and intensity of foliar damage, a pair of adults was confined to the host plant, for 2 generations, with different levels of larval densities. The results indicated that the host plant, due to both larval and adult feeding, suffered leaf losses of up to 55%. Anredera cordifolia was however still capable of enlarging the root mass despite suffering huge leaf losses. This would imply that A. cordifolia has an effective re-growth capacity and it will only be vulnerable to attack of the storage organs that enable re-growth, or to repeated attack of other plant parts through which reserves are exhausted. Unfortunately the period of exposure (24 days) was too short to prove that Phenrica sp. 2 impacts on the below ground dry mass, but should the plant be completely defoliated, as was observed in the field, the host plant would be forced to deplete stored resources. Phenrica sp.2 has shown to be very host specific and although A.cordifoia loses its leaves during the winter period in most provinces in South Africa, the adults are long-lived and should be able to survive the leafless periods. Further more the relatively short life cycle, high fecundity and 3 generations per year should theoretically insure a strong population build-up that would improve the chances of establishment in the field. All indications are that Phenrica sp. 2 is an agent well worth considering for the biological control of A. cordifolia.
- Full Text:
- Authors: Van der Westhuizen, Liamé
- Date: 2006
- Subjects: Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5689 , http://hdl.handle.net/10962/d1005375 , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Description: Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief. A biological control programme was therefore initiated in 2003. Cf Phenrica sp. 2 (Coleoptera: Chrysomelidae: Alticinae), was field collected from A. cordifolia in Brazil, SSW of Cascavel in the Paraná Province during a survey in November 2003. Eggs are laid in groups of 16 with the average fertility rate being 89%. After going though three larval instars, the larvae pupate in the soil with the adults eclosing after a period of 17 days. The total developmental time for a generation from egg to egg ranges between 7-8 weeks. Biological traits that favour the flea beetle as a possible biological control agent include long-lived adults (up to 5 months) and multiple generations during the summer period. Both adults and larvae feed extensively on leaves and stems and although developmental rates will slow down during the winter period, no indication of a definite diapause was found under the prevailing laboratory conditions. After completing the larval no-choice trials with twenty-six plant species from 14 plant families Phenrica sp. 2 proved to be adequately host specific, as larval development was only supported by 3 Basellaceae species (including the control A. cordifolia) and one Portulacaceae species. All of these are introduced species in South Africa. The only indigenous Basella species could not be tested as it has a very marginal distribution, and because it’s inconspicuous nature, it is seldom seen or collected. Adult multi-choice trials were restricted to species that could sustain larval development to give some indication of the acceptability of these species for adult feeding and oviposition. Although adult feeding was initially concentrated on B. alba, the oviposition preference was clear-cut as females only oviposited on A. cordifolia. In order to quantify the impact of Phenrica sp. 2 on plant biomass and to assess the incidence and intensity of foliar damage, a pair of adults was confined to the host plant, for 2 generations, with different levels of larval densities. The results indicated that the host plant, due to both larval and adult feeding, suffered leaf losses of up to 55%. Anredera cordifolia was however still capable of enlarging the root mass despite suffering huge leaf losses. This would imply that A. cordifolia has an effective re-growth capacity and it will only be vulnerable to attack of the storage organs that enable re-growth, or to repeated attack of other plant parts through which reserves are exhausted. Unfortunately the period of exposure (24 days) was too short to prove that Phenrica sp. 2 impacts on the below ground dry mass, but should the plant be completely defoliated, as was observed in the field, the host plant would be forced to deplete stored resources. Phenrica sp.2 has shown to be very host specific and although A.cordifoia loses its leaves during the winter period in most provinces in South Africa, the adults are long-lived and should be able to survive the leafless periods. Further more the relatively short life cycle, high fecundity and 3 generations per year should theoretically insure a strong population build-up that would improve the chances of establishment in the field. All indications are that Phenrica sp. 2 is an agent well worth considering for the biological control of A. cordifolia.
- Full Text:
The suitability of Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae: Alticinae), as a biological control agent for Lantana camara L. in South Africa
- Authors: Williams, Hester Elizabeth
- Date: 2003
- Subjects: Lantana camara , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Chrysomelidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5783 , http://hdl.handle.net/10962/d1005471 , Lantana camara , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Chrysomelidae
- Description: Lantana camara Linnaeus (Verbenaceae), commonly known as lantana, is a highly invasive weed in many parts of the world. In South Africa it is naturalized in several provinces where it invades pastures, riverbanks, mountain slopes and valleys and commercial and natural forests, forming dense, impenetrable thickets. Chemical and mechanical control methods are expensive, labour intensive and provide only temporary relief as cleared areas are rapidly reinfested by seedlings and coppice growth. A biological control programme was initiated in South Africa in the 1960s, but despite the establishment of 11 agent species, it was considered to have had limited success. Several factors are thought to restrict the impact of the biocontrol agents. Firstly, L. camara occurs in a range of climatic regions, some of which are unsuitable for the establishment of agent species of tropical and subtropical origin. Secondly, L. camara is the result of hybridization between several Lantana species, forming a complex of hybridized and hybridizing varieties in the field, which match none of the Lantana species in the region of origin. This causes partial insect-host incompatibility, displayed as varietal preference. Thirdly, parasitism appears to have significantly reduced the effectiveness of several natural enemies. In spite of all these constraints, biological control has reduced invasion by L. camara by 26%. However, the weed is still very damaging and additional natural enemies are required to reduce infestations further. A flea-beetle species, Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae), was collected from several sites in the humid subtropical and tropical regions of Mexico, and imported into quarantine in South Africa and studied as a potential biocontrol agent for L. camara. Favourable biological characteristics of this beetle included long-lived adults, several overlapping generations per year, and high adult and larval feeding rates. Observations from the insect’s native range and studies in South Africa suggest that A. extrema would probably be more suited to the subtropical, rather than the temperate areas in South Africa. Laboratory impact studies indicated that feeding damage by A. extrema larvae, over a period spanning the larval stage (16 to 20 days), reduced the above-ground biomass of L. camara plants by up to 29%. Higher larval populations resulted in a higher reduction of biomass. Varietal preference and suitability studies indicated that A. extrema exhibits a degree of varietal preference under laboratory conditions, with one of the white pink L. camara varieties proving the most suitable host. This variety is one of the most damaging varieties in South Africa and is particularly widespread in Mpumalanga Province. Although A. extrema proved to be damaging to L. camara, laboratory host range trials showed it to be an oligophagous species, capable of feeding and developing on several non-target species, especially two native Lippia species (Verbenaceae). The host suitability of these species was marginally lower than that of L. camara and the potential risk to these indigenous species was deemed to be too high to warrant release. It was therefore recommended that A. extrema not be considered for release in South Africa.
- Full Text:
- Authors: Williams, Hester Elizabeth
- Date: 2003
- Subjects: Lantana camara , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Chrysomelidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5783 , http://hdl.handle.net/10962/d1005471 , Lantana camara , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Chrysomelidae
- Description: Lantana camara Linnaeus (Verbenaceae), commonly known as lantana, is a highly invasive weed in many parts of the world. In South Africa it is naturalized in several provinces where it invades pastures, riverbanks, mountain slopes and valleys and commercial and natural forests, forming dense, impenetrable thickets. Chemical and mechanical control methods are expensive, labour intensive and provide only temporary relief as cleared areas are rapidly reinfested by seedlings and coppice growth. A biological control programme was initiated in South Africa in the 1960s, but despite the establishment of 11 agent species, it was considered to have had limited success. Several factors are thought to restrict the impact of the biocontrol agents. Firstly, L. camara occurs in a range of climatic regions, some of which are unsuitable for the establishment of agent species of tropical and subtropical origin. Secondly, L. camara is the result of hybridization between several Lantana species, forming a complex of hybridized and hybridizing varieties in the field, which match none of the Lantana species in the region of origin. This causes partial insect-host incompatibility, displayed as varietal preference. Thirdly, parasitism appears to have significantly reduced the effectiveness of several natural enemies. In spite of all these constraints, biological control has reduced invasion by L. camara by 26%. However, the weed is still very damaging and additional natural enemies are required to reduce infestations further. A flea-beetle species, Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae), was collected from several sites in the humid subtropical and tropical regions of Mexico, and imported into quarantine in South Africa and studied as a potential biocontrol agent for L. camara. Favourable biological characteristics of this beetle included long-lived adults, several overlapping generations per year, and high adult and larval feeding rates. Observations from the insect’s native range and studies in South Africa suggest that A. extrema would probably be more suited to the subtropical, rather than the temperate areas in South Africa. Laboratory impact studies indicated that feeding damage by A. extrema larvae, over a period spanning the larval stage (16 to 20 days), reduced the above-ground biomass of L. camara plants by up to 29%. Higher larval populations resulted in a higher reduction of biomass. Varietal preference and suitability studies indicated that A. extrema exhibits a degree of varietal preference under laboratory conditions, with one of the white pink L. camara varieties proving the most suitable host. This variety is one of the most damaging varieties in South Africa and is particularly widespread in Mpumalanga Province. Although A. extrema proved to be damaging to L. camara, laboratory host range trials showed it to be an oligophagous species, capable of feeding and developing on several non-target species, especially two native Lippia species (Verbenaceae). The host suitability of these species was marginally lower than that of L. camara and the potential risk to these indigenous species was deemed to be too high to warrant release. It was therefore recommended that A. extrema not be considered for release in South Africa.
- Full Text:
- «
- ‹
- 1
- ›
- »