Preformulation characterization and identification of excipients for nevirapine loaded niosomes
- Witika, Bwalya A, Walker, Roderick B
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183126 , vital:43914 , xlink:href="https://doi.org/10.1691/ph.2021.0137"
- Description: Nevirapine (NVP) is used for the management of HIV/AIDS but must be dosed frequently, exhibits unpredictable bioavailability and a side effect profile that includes hepato- and dermo-toxicity. Niosomes are a colloidal drug delivery system that may be used to overcome the low bioavailability, side effect profile and frequent dosing needed when using conventional drug delivery systems. The compatibility of NVP with sorbitan esters, polysorbate, cholesterol and dihexadecyl phosphate (DCP) was investigated using Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD). Screening studies were undertaken to identify potential excipients that would produce niosomes with target critical quality attributes (CQA) viz, a particle size (PS) less than 1000 nm, a polydispersity index (PDI) less than 0.500 and an entrapment efficiency greater than 90%. The results revealed that sorbitan esters in combination with cholesterol and 5 μmol DCP produced niosomes with the best CQA and Zeta potential (ZP) less than -30 mV which suggests good stability of the niosomes on storage. Sorbitan esters produced the smallest niosomes of less than 400 nm diameter with a PDI less than 0.400 and an entrapment efficiency of more than 78% without cholesterol. The addition of cholesterol and DCP was essential to form niosomes with target CQA.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183126 , vital:43914 , xlink:href="https://doi.org/10.1691/ph.2021.0137"
- Description: Nevirapine (NVP) is used for the management of HIV/AIDS but must be dosed frequently, exhibits unpredictable bioavailability and a side effect profile that includes hepato- and dermo-toxicity. Niosomes are a colloidal drug delivery system that may be used to overcome the low bioavailability, side effect profile and frequent dosing needed when using conventional drug delivery systems. The compatibility of NVP with sorbitan esters, polysorbate, cholesterol and dihexadecyl phosphate (DCP) was investigated using Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD). Screening studies were undertaken to identify potential excipients that would produce niosomes with target critical quality attributes (CQA) viz, a particle size (PS) less than 1000 nm, a polydispersity index (PDI) less than 0.500 and an entrapment efficiency greater than 90%. The results revealed that sorbitan esters in combination with cholesterol and 5 μmol DCP produced niosomes with the best CQA and Zeta potential (ZP) less than -30 mV which suggests good stability of the niosomes on storage. Sorbitan esters produced the smallest niosomes of less than 400 nm diameter with a PDI less than 0.400 and an entrapment efficiency of more than 78% without cholesterol. The addition of cholesterol and DCP was essential to form niosomes with target CQA.
- Full Text:
- Date Issued: 2021
Preformulation studies of efavirenz with lipid excipients using thermal and spectroscopic techniques
- Makoni, Pedzisai A, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183253 , vital:43934 , xlink:href=" https://doi.org/10.1691/ph.2020.0053"
- Description: Investigation and identification of potential lipids for the manufacture of efavirenz loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) was undertaken. Polymorphic modification and characteristics of the lipids with the best solubilising potential for efavirenz was explored using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Wide-angle X-ray Scattering (WAXS). Lipid screening revealed that EFV is highly soluble in solid and liquid lipids, with glyceryl monostearate (GM) and Transcutol® HP (THP) exhibiting the best solubilising potential for EFV. GM exists in a stable β-polymorphic modification prior to exposure to heat, but exists in an α-polymorphic modification following exposure to heat. However, it was established that the addition of THP to GM revealed the co-existence of the α- and β'-polymorphic modifications of the lipid. EFV (60% w/w) exists in a crystalline state in a 70:30 mixture of GM and THP. Investigation of binary mixtures of EFV/GM and GM/THP, in addition to eutectic mixtures of EFV, GM and THP using FT-IR, DSC and WAXS revealed no potential interactions between EFV and the lipids selected for the production of the nanocarriers.
- Full Text:
- Date Issued: 2020
Preformulation studies of efavirenz with lipid excipients using thermal and spectroscopic techniques
- Authors: Makoni, Pedzisai A , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183253 , vital:43934 , xlink:href=" https://doi.org/10.1691/ph.2020.0053"
- Description: Investigation and identification of potential lipids for the manufacture of efavirenz loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) was undertaken. Polymorphic modification and characteristics of the lipids with the best solubilising potential for efavirenz was explored using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Wide-angle X-ray Scattering (WAXS). Lipid screening revealed that EFV is highly soluble in solid and liquid lipids, with glyceryl monostearate (GM) and Transcutol® HP (THP) exhibiting the best solubilising potential for EFV. GM exists in a stable β-polymorphic modification prior to exposure to heat, but exists in an α-polymorphic modification following exposure to heat. However, it was established that the addition of THP to GM revealed the co-existence of the α- and β'-polymorphic modifications of the lipid. EFV (60% w/w) exists in a crystalline state in a 70:30 mixture of GM and THP. Investigation of binary mixtures of EFV/GM and GM/THP, in addition to eutectic mixtures of EFV, GM and THP using FT-IR, DSC and WAXS revealed no potential interactions between EFV and the lipids selected for the production of the nanocarriers.
- Full Text:
- Date Issued: 2020
Design, evaluation and optimization of taste masked clarithromycin powder
- Ntemi, Pascal V, Walker, Roderick B, Khamanga, Sandile M
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
Development, manufacture and characterization of niosomes for the delivery for nevirapine
- Witika, Bwalya A, Walker, Roderick B
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
The use of experimental design for the development and validation of an HPLC-ECD method for the quantitation of efavirenz
- Makoni, Pedzisai A, Khamanga, Sandile M, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
The use of experimental design for the development of a capillary zone electrophoresis method for the quantitation of captopril
- Mukozhiwa, S Y, Khamanga, Sandile M, Walker, Roderick B
- Authors: Mukozhiwa, S Y , Khamanga, Sandile M , Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183828 , vital:44073 , xlink:href="https://doi.org/10.1691/ph.2017.7071"
- Description: A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.
- Full Text:
- Date Issued: 2017
- Authors: Mukozhiwa, S Y , Khamanga, Sandile M , Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183828 , vital:44073 , xlink:href="https://doi.org/10.1691/ph.2017.7071"
- Description: A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »