Development and assessment of azithromycin paediatric suppository formulations
- Authors: Mollel, Happiness
- Date: 2006
- Subjects: Azithromycin , Pediatrics , Clinical pharmacology , Pharmacokinetics , Suppositories , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3774 , http://hdl.handle.net/10962/d1003252 , Azithromycin , Pediatrics , Clinical pharmacology , Pharmacokinetics , Suppositories , Drugs -- Dosage forms
- Description: The use of the oral route of administration for the treatment of young children with antibiotics can at times be problematic since, factors such as nausea, vomiting, taste and/or smell, in addition to the challenges associated with the administration of suspensions, may contribute to poor patient compliance. In such cases, the use of the rectal route of administration may be appropriate. Therefore, suppositories containing 250 mg azithromycin (AZI) were manufactured and assessed for potential as an antibiotic suppository dosage form. Suppositories, containing AZI dihydrate were manufactured by the fusion method, using different grades of PEG, Witepsol® and Suppocire® bases. The rate and extent of AZI release was evaluated using USP apparatus I, and samples were analyzed using a validated HPLC method. Differences in the rate and extent of AZI release were observed with the greatest amount of AZI being released from PEG formulations. The rate and extent of AZI release from formulations manufactured using fatty bases were influenced by physicochemical properties, such as melting rate and hydroxyl value, of the bases. In addition drug partitioning appeared to favor the lipid phase and had a negative impact on AZI release characteristics. Two different formulation approaches were used in an attempt to increase the rate and extent of AZI release from fatty base formulations. The use of surfactants significantly increased AZI release from formulations manufactured with fatty bases with high hydroxyl values. The use of urea or Povidone K25 in combination with AZI as a physical mixture or solid dispersion did not increase the rate and extent of AZI release from the fatty suppositories, to any significant extent. The mechanism of drug release was evaluated using several mathematical models, including the Higuchi, Korsmeyer- eppas, Zero and, First order models. In addition, in vitro dissolution profiles were characterized by the difference and similarity factors, f1 and f2 and by use of the Gohel similarity factor, Sd. AZI release kinetics were best described by the Higuchi and Korsmeyer-Peppas models and the values of the release exponent, n, revealed that drug release was a consequence of the combined effects of AZI diffusion, rate of melting of the base and partitioning of the drug which can be considered to be anomalous release.
- Full Text:
- Date Issued: 2006
- Authors: Mollel, Happiness
- Date: 2006
- Subjects: Azithromycin , Pediatrics , Clinical pharmacology , Pharmacokinetics , Suppositories , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3774 , http://hdl.handle.net/10962/d1003252 , Azithromycin , Pediatrics , Clinical pharmacology , Pharmacokinetics , Suppositories , Drugs -- Dosage forms
- Description: The use of the oral route of administration for the treatment of young children with antibiotics can at times be problematic since, factors such as nausea, vomiting, taste and/or smell, in addition to the challenges associated with the administration of suspensions, may contribute to poor patient compliance. In such cases, the use of the rectal route of administration may be appropriate. Therefore, suppositories containing 250 mg azithromycin (AZI) were manufactured and assessed for potential as an antibiotic suppository dosage form. Suppositories, containing AZI dihydrate were manufactured by the fusion method, using different grades of PEG, Witepsol® and Suppocire® bases. The rate and extent of AZI release was evaluated using USP apparatus I, and samples were analyzed using a validated HPLC method. Differences in the rate and extent of AZI release were observed with the greatest amount of AZI being released from PEG formulations. The rate and extent of AZI release from formulations manufactured using fatty bases were influenced by physicochemical properties, such as melting rate and hydroxyl value, of the bases. In addition drug partitioning appeared to favor the lipid phase and had a negative impact on AZI release characteristics. Two different formulation approaches were used in an attempt to increase the rate and extent of AZI release from fatty base formulations. The use of surfactants significantly increased AZI release from formulations manufactured with fatty bases with high hydroxyl values. The use of urea or Povidone K25 in combination with AZI as a physical mixture or solid dispersion did not increase the rate and extent of AZI release from the fatty suppositories, to any significant extent. The mechanism of drug release was evaluated using several mathematical models, including the Higuchi, Korsmeyer- eppas, Zero and, First order models. In addition, in vitro dissolution profiles were characterized by the difference and similarity factors, f1 and f2 and by use of the Gohel similarity factor, Sd. AZI release kinetics were best described by the Higuchi and Korsmeyer-Peppas models and the values of the release exponent, n, revealed that drug release was a consequence of the combined effects of AZI diffusion, rate of melting of the base and partitioning of the drug which can be considered to be anomalous release.
- Full Text:
- Date Issued: 2006
Development and assessment of propranolol sustained release dosage forms separately and in combination with hydrochlorothiazide
- Authors: Chetty, Prakash
- Date: 2006
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3749 , http://hdl.handle.net/10962/d1003227
- Description: Hypertension is a chronic illness that is often undiagnosed and untreated leading to high mortality rates in South Africa. The use of diuretics such as hydrochlorothiazide and beta blockers such as propranolol has been advocated as first line therapy for the treatment of hypertension. The study and use of controlled release dosage forms for the treatment of various disease states has gained wide interest over the past two decades. The use of controlled release systems offers improved therapeutic efficiency over conventional immediate release dosage forms, the use of which at times have often led to poor patient adherence and decreased therapeutic efficiencies. The current research objective was to develop a sustained release multi-source product for propranolol such that once daily dosing would be achieved. In addition, the sustained release product was developed using Inderal® LA 80mg capsules as a reference product. In addition the development of a suitable immediate release hydrochlorothiazide tablet was undertaken to produce a combination dosage form. The use of two different technologies, namely direct compression and wet granulation were employed to develop the sustained release dosage form. The release of propranolol from these dosage forms was assessed using USP apparatus 1 with quantitation of the relevant dissolution samples using a validated high performance liquid chromatographic method. The release profiles from the prototype and subsequent products were subjected to model independent and model dependent analyses in order to compare them to the innovator product and to elucidate the mechanisms of drug release respectively. Dissolution test results reveal that dosage forms prepared from wet granulation showed better rate retardation and more appropriate release profiles than those prepared by direct compression techniques. The subsequent model independent and model dependent analysis show that a dosage form that is comparable to the innovator product has been developed, with drug release occurring by a diffusion type mechanism.
- Full Text:
- Date Issued: 2006
- Authors: Chetty, Prakash
- Date: 2006
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3749 , http://hdl.handle.net/10962/d1003227
- Description: Hypertension is a chronic illness that is often undiagnosed and untreated leading to high mortality rates in South Africa. The use of diuretics such as hydrochlorothiazide and beta blockers such as propranolol has been advocated as first line therapy for the treatment of hypertension. The study and use of controlled release dosage forms for the treatment of various disease states has gained wide interest over the past two decades. The use of controlled release systems offers improved therapeutic efficiency over conventional immediate release dosage forms, the use of which at times have often led to poor patient adherence and decreased therapeutic efficiencies. The current research objective was to develop a sustained release multi-source product for propranolol such that once daily dosing would be achieved. In addition, the sustained release product was developed using Inderal® LA 80mg capsules as a reference product. In addition the development of a suitable immediate release hydrochlorothiazide tablet was undertaken to produce a combination dosage form. The use of two different technologies, namely direct compression and wet granulation were employed to develop the sustained release dosage form. The release of propranolol from these dosage forms was assessed using USP apparatus 1 with quantitation of the relevant dissolution samples using a validated high performance liquid chromatographic method. The release profiles from the prototype and subsequent products were subjected to model independent and model dependent analyses in order to compare them to the innovator product and to elucidate the mechanisms of drug release respectively. Dissolution test results reveal that dosage forms prepared from wet granulation showed better rate retardation and more appropriate release profiles than those prepared by direct compression techniques. The subsequent model independent and model dependent analysis show that a dosage form that is comparable to the innovator product has been developed, with drug release occurring by a diffusion type mechanism.
- Full Text:
- Date Issued: 2006
Patient education : the effect on patient behaviour
- Authors: Shiri, Clarris
- Date: 2006
- Subjects: Patient education -- South Africa -- Eastern Cape Patient compliance -- South Africa -- Eastern Cape Hypertension -- Treatment -- South Africa Health care services -- South Africa Community health services -- South Africa
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3790 , http://hdl.handle.net/10962/d1003268
- Description: Evidence suggests that the prevalence of certain non-communicable diseases, such as hypertension, is increasing rapidly, and that patients with these diseases are making significant demands on the health services of the nations in sub-Saharan Africa. However, these countries also face other health-related challenges such as communicable diseases and underdevelopmentrelated diseases. Developing countries like South Africa have limited resources, in terms of man power and financial capital, to address the challenges that they are facing. Non-communicable diseases cannot be ignored and since health care providers cannot meet the challenges, it is worthwhile to empower patients to be involved in the management of their conditions. Patient education is a tool that can be used to enable patients to manage their chronic conditions and thereby reduce the morbidity and mortality rates of these conditions. The aim of this study was to investigate the effect of a patient education intervention on participants’ levels of knowledge about hypertension and its therapy, beliefs about medicines and adherence to anti-hypertensive therapy. The intervention consisted of talks and discussions with all the participants as one group and as individuals. There was also written information given to the participants. Their levels of knowledge about hypertension and its therapy were measured using one-on-one interviews and self-administered questionnaires. Beliefs about medicines were measured using the Beliefs about Medicines Questionnaire (BMQ) whilst adherence levels were measured using pill counts, elf-reports and prescription refill records. The participants’ blood pressure readings and body mass indices were also recorded throughout the study. The parameters before and after the educational intervention were compared using statistical analyses. The participants’ levels of knowledge about hypertension and its therapy significantly increased whilst their beliefs about medicines were positively modified after the educational intervention. There were also increases, though not statistically significant, in the participants’ levels of adherence to anti-hypertensive therapy. Unexpectedly, the blood pressure readings and body mass indices increased significantly. The participants gave positive feedback regarding the educational intervention and indicated a desire for similar programmes to be run continuously. They also suggested that such programmes be implemented for other common chronic conditions such as asthma and diabetes. This study proved that patient education programmes can be implemented to modify patients’ levels of knowledge about their conditions and the therapy, beliefs about medicines and adherence to therapy. However, such programmes need to be conducted over a long period of time since changes involving behaviour take a long time.
- Full Text:
- Date Issued: 2006
- Authors: Shiri, Clarris
- Date: 2006
- Subjects: Patient education -- South Africa -- Eastern Cape Patient compliance -- South Africa -- Eastern Cape Hypertension -- Treatment -- South Africa Health care services -- South Africa Community health services -- South Africa
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3790 , http://hdl.handle.net/10962/d1003268
- Description: Evidence suggests that the prevalence of certain non-communicable diseases, such as hypertension, is increasing rapidly, and that patients with these diseases are making significant demands on the health services of the nations in sub-Saharan Africa. However, these countries also face other health-related challenges such as communicable diseases and underdevelopmentrelated diseases. Developing countries like South Africa have limited resources, in terms of man power and financial capital, to address the challenges that they are facing. Non-communicable diseases cannot be ignored and since health care providers cannot meet the challenges, it is worthwhile to empower patients to be involved in the management of their conditions. Patient education is a tool that can be used to enable patients to manage their chronic conditions and thereby reduce the morbidity and mortality rates of these conditions. The aim of this study was to investigate the effect of a patient education intervention on participants’ levels of knowledge about hypertension and its therapy, beliefs about medicines and adherence to anti-hypertensive therapy. The intervention consisted of talks and discussions with all the participants as one group and as individuals. There was also written information given to the participants. Their levels of knowledge about hypertension and its therapy were measured using one-on-one interviews and self-administered questionnaires. Beliefs about medicines were measured using the Beliefs about Medicines Questionnaire (BMQ) whilst adherence levels were measured using pill counts, elf-reports and prescription refill records. The participants’ blood pressure readings and body mass indices were also recorded throughout the study. The parameters before and after the educational intervention were compared using statistical analyses. The participants’ levels of knowledge about hypertension and its therapy significantly increased whilst their beliefs about medicines were positively modified after the educational intervention. There were also increases, though not statistically significant, in the participants’ levels of adherence to anti-hypertensive therapy. Unexpectedly, the blood pressure readings and body mass indices increased significantly. The participants gave positive feedback regarding the educational intervention and indicated a desire for similar programmes to be run continuously. They also suggested that such programmes be implemented for other common chronic conditions such as asthma and diabetes. This study proved that patient education programmes can be implemented to modify patients’ levels of knowledge about their conditions and the therapy, beliefs about medicines and adherence to therapy. However, such programmes need to be conducted over a long period of time since changes involving behaviour take a long time.
- Full Text:
- Date Issued: 2006
Pharmaceutical analysis and drug interaction studies : African potato (Hypoxis hemerocallidea)
- Purushothaman Nair, Vipin Devi Prasad
- Authors: Purushothaman Nair, Vipin Devi Prasad
- Date: 2006
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Medicinal plants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3865 , http://hdl.handle.net/10962/d1015802
- Description: In order for a medicinal product to produce a consistent and reliable therapeutic response, it is essential that the final composition of the product is invariable and that the active ingredient/s is/are present in appropriate, non-toxic amounts. However, due to the complexity involved in the standardization of natural products, quality control (QC) criteria and procedures for the registration and market approval of such products are conspicuously absent in most countries around the world. African Potato (AP) is of great medical interest and this particular plant has gained tremendous popularity following the endorsement by the South African Minister of Health as a remedy for HIV/ AIDS patients. Very little information has appeared in the literature to describe methods for the quantitative analysis of hypoxoside, an important component in AP. It has also been claimed that sterols and sterolins present in AP are responsible for its medicinal property but is yet to be proven scientifically. To-date, no QC methods have been reported for the simultaneous quantitative analysis of the combination, β- sitosterol (BSS)/ stigmasterol (STG)/ stigmastanol (STN), purported to be present in preparations containing AP. The effect of concomitant administration of AP and other herbal medicines on the safety and efficacy of conventional medicines has not yet been fully determined. Amongst the objectives of this study was to develop and validate quantitative analytical methods that are suitable for the assay and quality control of plant material, extracts and commercial formulations containing AP. Hypoxoside was isolated from AP and characterized for use as a reference standard for the quality control of AP products and a stability-indicating HPLC/ UV assay method for the quantitative determination of hypoxoside was developed. In addition, a quantitative capillary zone electrophoretic (CZE) method was developed to determine hypoxoside, specifically for its advantages over HPLC. A HPLC method was also developed and validated for the quantitative analysis of BSS, STG and STN in commercially available oral dosage forms containing AP material or extracts thereof. The antioxidant activity of an aqueous extract of lyophilized corms of AP along with hypoxoside and rooperol were investigated. In comparison with the AP extracts and also with hypoxoside, rooperol showed significant antioxidant activity. The capacity of AP, (extracts, formulations, hypoxoside and rooperol as well as sterols to inhibit in vitro metabolism of drug substrates by human cytochrome P450 (CYP) enzymes such as CYP 3A4, 3A5 and CYP19 were investigated. Samples were also assessed for their effect on drug transport proteins such as P-glycoprotein (P-gp). Various extracts of AP, AP formulations, stigmasterol and the norlignans, in particular the aglycone rooperol, exhibited inhibitory effects on CYP 3A4, 3A5 and CYP19 mediated metabolism.These results suggest that concurrent therapy with AP and other medicines, in particular antiretroviral drugs, can have important implications for safety and efficacy. Large discrepancies in marker content between AP products were found. Dissolution testing of AP products was investigated as a QC tool and the results also revealed inconsistencies between different AP products.
- Full Text:
- Date Issued: 2006
- Authors: Purushothaman Nair, Vipin Devi Prasad
- Date: 2006
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Medicinal plants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3865 , http://hdl.handle.net/10962/d1015802
- Description: In order for a medicinal product to produce a consistent and reliable therapeutic response, it is essential that the final composition of the product is invariable and that the active ingredient/s is/are present in appropriate, non-toxic amounts. However, due to the complexity involved in the standardization of natural products, quality control (QC) criteria and procedures for the registration and market approval of such products are conspicuously absent in most countries around the world. African Potato (AP) is of great medical interest and this particular plant has gained tremendous popularity following the endorsement by the South African Minister of Health as a remedy for HIV/ AIDS patients. Very little information has appeared in the literature to describe methods for the quantitative analysis of hypoxoside, an important component in AP. It has also been claimed that sterols and sterolins present in AP are responsible for its medicinal property but is yet to be proven scientifically. To-date, no QC methods have been reported for the simultaneous quantitative analysis of the combination, β- sitosterol (BSS)/ stigmasterol (STG)/ stigmastanol (STN), purported to be present in preparations containing AP. The effect of concomitant administration of AP and other herbal medicines on the safety and efficacy of conventional medicines has not yet been fully determined. Amongst the objectives of this study was to develop and validate quantitative analytical methods that are suitable for the assay and quality control of plant material, extracts and commercial formulations containing AP. Hypoxoside was isolated from AP and characterized for use as a reference standard for the quality control of AP products and a stability-indicating HPLC/ UV assay method for the quantitative determination of hypoxoside was developed. In addition, a quantitative capillary zone electrophoretic (CZE) method was developed to determine hypoxoside, specifically for its advantages over HPLC. A HPLC method was also developed and validated for the quantitative analysis of BSS, STG and STN in commercially available oral dosage forms containing AP material or extracts thereof. The antioxidant activity of an aqueous extract of lyophilized corms of AP along with hypoxoside and rooperol were investigated. In comparison with the AP extracts and also with hypoxoside, rooperol showed significant antioxidant activity. The capacity of AP, (extracts, formulations, hypoxoside and rooperol as well as sterols to inhibit in vitro metabolism of drug substrates by human cytochrome P450 (CYP) enzymes such as CYP 3A4, 3A5 and CYP19 were investigated. Samples were also assessed for their effect on drug transport proteins such as P-glycoprotein (P-gp). Various extracts of AP, AP formulations, stigmasterol and the norlignans, in particular the aglycone rooperol, exhibited inhibitory effects on CYP 3A4, 3A5 and CYP19 mediated metabolism.These results suggest that concurrent therapy with AP and other medicines, in particular antiretroviral drugs, can have important implications for safety and efficacy. Large discrepancies in marker content between AP products were found. Dissolution testing of AP products was investigated as a QC tool and the results also revealed inconsistencies between different AP products.
- Full Text:
- Date Issued: 2006
The development and assessment of a generic carbamazepine sustained release dosage form
- Authors: Patel, Fathima
- Date: 2006
- Subjects: Carbamazepine Pharmacokinetics Drugs -- Controlled release Drugs -- Dosage forms Tablets (Medicine) Drugs -- Administration
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3784 , http://hdl.handle.net/10962/d1003262
- Description: Carbamazepine (CBZ) is a first-line drug used for the treatment of partial and tonic-clonic seizures. It is also the drug of choice for use during pregnancy and recommended for the treatment of seizure disorders in children. CBZ possesses the ability to induce metabolism of drugs that are transformed in the liver and has the unique ability to induce its own metabolism by a phenomenon known as ‘auto- induction’, where its biological half-life is significantly reduced during chronic administration. Large doses of CBZ are often prescribed as daily divided doses and this often adversely affects patient compliance, with the result that therapy is ineffective. A sustained-release dosage form containing CBZ is currently marketed as Tegretol® CR and the development of a generic product would provide patients with an equivalent product with a similar dosing frequency, at a reduced cost. Therefore, the development of a polymer-based matrix tablet was undertaken to produce a sustained-release dosage form of CBZ, since these dosage forms are relatively simple and cheap to produce when compared to other, more sophisticated forms of sustained-release technology. Preformulation studies were conducted to assess moisture content of excipients and dosage forms and to identify possible incompatibilities between CBZ and potential formulation excipients. Furthermore, studies were conducted to assess the potential for polymorphic transitions to occur during manufacture. Stability testing was conducted to assess the behaviour of the dosage forms under storage conditions that the product may be exposed to. Dissolution testing was undertaken using USP Apparatus 3, which allowed for a more realistic assessment and prediction of in vivo drug release rates. Samples were analysed using a high performance liquid chromatographic method that was developed and validated for the determination of CBZ. Tablets were manufactured by wet granulation and direct compression techniques, and the resultant drug release profiles were evaluated statistically by means of the f1 and f2 difference and similarity factors. The f2 factor was incorporated as an assessment criterion in the design of an artificial neural network that was used to predict drug release profiles and formulation composition. A direct compression tablet formulation was successfully adapted from a prototype wet granulation matrix formulation and a number of formulation variables were assessed to establish their effect(s) on the dissolution rate profile of CBZ that resulted from testing of the dosage forms. The particle size grade of CBZ was also investigated and it was ascertained that fine particle size grade CBZ showed improved drug release profiles when compared to the coarse grade CBZ which was desirable, since CBZ is a highly water insoluble compound. Furthermore, the impact of the viscosity grade and proportion of rate-controlling polymer, viz., hydroxypropyl methylcellulose was also investigated for its effect on drug release rates. The lower viscosity grade was found to be more appropriate for use with CBZ. The type of anti-frictional agent used in the formulations did not appear to affect drug release from the polymeric matrix tablets, however specific compounds may have an effect on the physical characteristics of the polymeric tablets. The resultant formulations did not display zero-order drug release kinetics and a first-order mathematical model was developed to provide an additional resource for athematical analysis of dissolution profiles. An artificial neural network was designed, developed and applied to predict dissolution rate profiles for formulation. Furthermore, the network was used to predict formulation compositions that would produce drug release profiles comparable to the reference product, Tegretol® CR. The formulation composition predicted by the network to match the dissolution profile of the innovator product was manufactured and tested in vitro. The formulation was further manipulated, empirically, so as to match the in vitro dissolution rate profile of Tegretol® CR, more completely. The test tablets that were produced were tested in two health male volunteers using Tegretol® CR 400mg as the reference product. The batch used for this “proof of concept” biostudy was produced in accordance with cGMP guidelines and the protocol in accordance with ICH guidelines. The test matrix tablets revealed in vivo bioavailability profiles for CBZ, however, bioequivalence between the test and reference product could not be established. It can be concluded that the polymeric matrix CBZ tablets have the potential to be used as a twice-daily dosage form for the treatment of relevant seizure disorders.
- Full Text:
- Date Issued: 2006
- Authors: Patel, Fathima
- Date: 2006
- Subjects: Carbamazepine Pharmacokinetics Drugs -- Controlled release Drugs -- Dosage forms Tablets (Medicine) Drugs -- Administration
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3784 , http://hdl.handle.net/10962/d1003262
- Description: Carbamazepine (CBZ) is a first-line drug used for the treatment of partial and tonic-clonic seizures. It is also the drug of choice for use during pregnancy and recommended for the treatment of seizure disorders in children. CBZ possesses the ability to induce metabolism of drugs that are transformed in the liver and has the unique ability to induce its own metabolism by a phenomenon known as ‘auto- induction’, where its biological half-life is significantly reduced during chronic administration. Large doses of CBZ are often prescribed as daily divided doses and this often adversely affects patient compliance, with the result that therapy is ineffective. A sustained-release dosage form containing CBZ is currently marketed as Tegretol® CR and the development of a generic product would provide patients with an equivalent product with a similar dosing frequency, at a reduced cost. Therefore, the development of a polymer-based matrix tablet was undertaken to produce a sustained-release dosage form of CBZ, since these dosage forms are relatively simple and cheap to produce when compared to other, more sophisticated forms of sustained-release technology. Preformulation studies were conducted to assess moisture content of excipients and dosage forms and to identify possible incompatibilities between CBZ and potential formulation excipients. Furthermore, studies were conducted to assess the potential for polymorphic transitions to occur during manufacture. Stability testing was conducted to assess the behaviour of the dosage forms under storage conditions that the product may be exposed to. Dissolution testing was undertaken using USP Apparatus 3, which allowed for a more realistic assessment and prediction of in vivo drug release rates. Samples were analysed using a high performance liquid chromatographic method that was developed and validated for the determination of CBZ. Tablets were manufactured by wet granulation and direct compression techniques, and the resultant drug release profiles were evaluated statistically by means of the f1 and f2 difference and similarity factors. The f2 factor was incorporated as an assessment criterion in the design of an artificial neural network that was used to predict drug release profiles and formulation composition. A direct compression tablet formulation was successfully adapted from a prototype wet granulation matrix formulation and a number of formulation variables were assessed to establish their effect(s) on the dissolution rate profile of CBZ that resulted from testing of the dosage forms. The particle size grade of CBZ was also investigated and it was ascertained that fine particle size grade CBZ showed improved drug release profiles when compared to the coarse grade CBZ which was desirable, since CBZ is a highly water insoluble compound. Furthermore, the impact of the viscosity grade and proportion of rate-controlling polymer, viz., hydroxypropyl methylcellulose was also investigated for its effect on drug release rates. The lower viscosity grade was found to be more appropriate for use with CBZ. The type of anti-frictional agent used in the formulations did not appear to affect drug release from the polymeric matrix tablets, however specific compounds may have an effect on the physical characteristics of the polymeric tablets. The resultant formulations did not display zero-order drug release kinetics and a first-order mathematical model was developed to provide an additional resource for athematical analysis of dissolution profiles. An artificial neural network was designed, developed and applied to predict dissolution rate profiles for formulation. Furthermore, the network was used to predict formulation compositions that would produce drug release profiles comparable to the reference product, Tegretol® CR. The formulation composition predicted by the network to match the dissolution profile of the innovator product was manufactured and tested in vitro. The formulation was further manipulated, empirically, so as to match the in vitro dissolution rate profile of Tegretol® CR, more completely. The test tablets that were produced were tested in two health male volunteers using Tegretol® CR 400mg as the reference product. The batch used for this “proof of concept” biostudy was produced in accordance with cGMP guidelines and the protocol in accordance with ICH guidelines. The test matrix tablets revealed in vivo bioavailability profiles for CBZ, however, bioequivalence between the test and reference product could not be established. It can be concluded that the polymeric matrix CBZ tablets have the potential to be used as a twice-daily dosage form for the treatment of relevant seizure disorders.
- Full Text:
- Date Issued: 2006
A study of plocamium corallorhiza secondary metabolites and their biological activity
- Authors: Mkwananzi, Henry Bayanda
- Date: 2005
- Subjects: Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3841 , http://hdl.handle.net/10962/d1007666 , Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Description: Seaweeds of the genus Plocamium are known to produce a variety of halogenated monoterpenes. In addition to their ecological role as feeding deterrents, biological activities reported for these compounds include antibacterial, antialgal, antifungal and anticancer activities. An investigation of the non-polar extracts of the seaweed Plocamium corallorhiza resulted in the isolation of six known halogenated monoterpene compounds, 4-bromo-5-bromomethyl-1-chlorovinyl-2, 5-dichloro-methylcyclohexane (2.68), 1,4,8-tribromo-3 ,7-dichloro-3, 7-dimethyl-1,5-octadiene (2.67), 8-bromo-1 ,3,4,7-tetrachloro-3, 7-dimethyl-1,5-octadiene (2.66), 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2,7-octadiene (2.64), 4,8-dibromo-1,1,7-trichloro-3,7-dimethyl-2,5-octadiene (2.65) and 3,4 ,6,7-tetrachloro-3, 7-dimethyl-1-octene (2.63) as well as eight new compounds, including five halogenated monoterpene aldehydes. The new compounds were identified by 1D and 2D NMR spectroscopic techniques as: 8-Bromo-6,7-dichloro-3,7-dimethyl-octa-2,4-dienal (2.72), 8-Bromo-1,1,2,7-tetrachloro-3,7-dimethyl-octa-3,5-diene (2.70), 4,8-Dichloro-3,7-dimethyl-octa-2,4,6-trienal (2.74), 4-Bromo-8-chloro-3, 7-di methyl-octa-2, 6-dienal (2 76), 8-Bromo-4-chloro-3, 7-dimethyl-octa-2,4 ,6-trienaI (2.75), 4-Bromo-1,3,6,7-tetrachloro-3 ,7-dimethyl-octa-1,4-diene (2.71), 8-Bromo-1,3,4,7-tetrachloro-3,7-dimethyl-octa-1,5-diene (2.69), 4,6-Dibromo-3,7 -dimethyl-octa-2,7-dienal (2.73). All compounds were screened for antimicrobial activity, brine shrimp lethality and cytotoxicity towards oesophageal cancer cells. Compound 2.68 was toxic to brine shrimp larvae at a concentration of 50 μ/mL. It also showed promising activity towards oesophageal cancer cells with an IC₅₀, of 2 μg/mL.
- Full Text:
- Date Issued: 2005
- Authors: Mkwananzi, Henry Bayanda
- Date: 2005
- Subjects: Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3841 , http://hdl.handle.net/10962/d1007666 , Natural products -- Therapeutic use , Marine metabolites -- Therapeutic use , Marine pharmacology , Marine algae , Monoterpenes
- Description: Seaweeds of the genus Plocamium are known to produce a variety of halogenated monoterpenes. In addition to their ecological role as feeding deterrents, biological activities reported for these compounds include antibacterial, antialgal, antifungal and anticancer activities. An investigation of the non-polar extracts of the seaweed Plocamium corallorhiza resulted in the isolation of six known halogenated monoterpene compounds, 4-bromo-5-bromomethyl-1-chlorovinyl-2, 5-dichloro-methylcyclohexane (2.68), 1,4,8-tribromo-3 ,7-dichloro-3, 7-dimethyl-1,5-octadiene (2.67), 8-bromo-1 ,3,4,7-tetrachloro-3, 7-dimethyl-1,5-octadiene (2.66), 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2,7-octadiene (2.64), 4,8-dibromo-1,1,7-trichloro-3,7-dimethyl-2,5-octadiene (2.65) and 3,4 ,6,7-tetrachloro-3, 7-dimethyl-1-octene (2.63) as well as eight new compounds, including five halogenated monoterpene aldehydes. The new compounds were identified by 1D and 2D NMR spectroscopic techniques as: 8-Bromo-6,7-dichloro-3,7-dimethyl-octa-2,4-dienal (2.72), 8-Bromo-1,1,2,7-tetrachloro-3,7-dimethyl-octa-3,5-diene (2.70), 4,8-Dichloro-3,7-dimethyl-octa-2,4,6-trienal (2.74), 4-Bromo-8-chloro-3, 7-di methyl-octa-2, 6-dienal (2 76), 8-Bromo-4-chloro-3, 7-dimethyl-octa-2,4 ,6-trienaI (2.75), 4-Bromo-1,3,6,7-tetrachloro-3 ,7-dimethyl-octa-1,4-diene (2.71), 8-Bromo-1,3,4,7-tetrachloro-3,7-dimethyl-octa-1,5-diene (2.69), 4,6-Dibromo-3,7 -dimethyl-octa-2,7-dienal (2.73). All compounds were screened for antimicrobial activity, brine shrimp lethality and cytotoxicity towards oesophageal cancer cells. Compound 2.68 was toxic to brine shrimp larvae at a concentration of 50 μ/mL. It also showed promising activity towards oesophageal cancer cells with an IC₅₀, of 2 μg/mL.
- Full Text:
- Date Issued: 2005
An investigation into the antidepressant activity of hypericum perforatum
- Authors: Stephens, Linda Lee
- Date: 2005
- Subjects: Hypericum perforatum -- Physiological effect Hypericum perforatum -- Therapeutic use Antidepressants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3793 , http://hdl.handle.net/10962/d1003271
- Description: Hypericum perforatum is a herbal medicine that has been used for centuries for the treatment of depression. Many studies have been conducted in the Northern hemisphere on the efficacy of the HP extracts produced there. These studies include clinical trials and pharmacological investigations using a standardised HP extract or a fraction of the HP extract containing certain compounds, such as hypericin, pseudohypericin, hyperforin and several of the flavonoids thought to be responsible for the antidepressant activity. The mechanism of action of HP and its constituents is still not completely clear and it is speculated that the antidepressant activity is the result of several of the compounds acting synergistically. HP is indigenous to and also cultivated in the Western Cape of South Africa. Extracts from these plants are sold in the local health shops and there are no previous studies evaluating the efficacy of these products. The aim of this thesis is to investigate the antidepressant activity of one of these products and two of its constituents, quercetin and caffeic acid, to gain further insight into their mode of antidepressant action and to compare these results with similar studies which used a standardised extract produced in the northern hemisphere. The first study investigated the effect of HP, quercetin and caffeic acid on pineal metabolism. Changes in the synthesis of melatonin produced by the pineal gland have been implicated in depression. The results showed an increase in the level of melatonin produced in the animals treated with quercetin, which suggests that this compound may mediate antidepressant activity through such a mechanism. There are no previous reports on the in vivo effects of HP or any of its constituents on pineal metabolism. The second study investigated the effect of HP, quercetin and caffeic acid on the activity of the liver enzyme, tryptophan-2,3-dioxygenase (TDO). Inhibition of this enzyme has been shown to increase plasma levels of tryptophan, a precursor of serotonin and thereby result in increased serotonin levels in the brain. Low levels of serotonin in the brain have been implicated in depression. This study revealed significant inhibition of TDO by caffeic acid and this suggests that this constituent of HP could be contributing to its antidepressant activity through such a mechanism. There are no previous reports investigating the in vivo effect of HP or any of its constituents on TDO activity. Modulation of the levels of indoleamines, serotonin (5-HT) and dopamine (DA) as well as the metabolites, 3,4 dihydroxyphenyl acetic acid (DOPAC), 5-hydroxyindole acetic acid (5-HIAA) and homovallinic acid (HVA) in the brain have been implicated in the neuropharmacology of depression. Different studies using enzyme-linked immunosorbant assay (ELISA), high performance liquid chromatography with electrochemical detection (HPLC-ECD) and liquid chromatography-mass spectrometry (LC-MS) were used to determine changes in the levels of these indoleamines brought about after treatment with HP caffeic acid and quercetin. The results of the ELISA study showed significant increases in 5-HT levels in the brains of the animals treated with caffeic acid and quercetin. The results of the HPLC-ECD studies also revealed significant increases in 5-HT levels and a decrease in the turnover of 5-HT in the animals treated with quercetin. A significant increase in DA levels in the animals treated with quercetin was shown in both the HPLC-ECD and LC-MS studies. There was also an increase in DA turnover in the animals treated with HP shown in the HPLC-ECD and LC-MS studies. These results suggest that HP and its constituents, quercetin and caffeic acid mediate their antidepressant effects through serotonergic and dopaminergic neurotransmission. Adaptive changes in the density of b-adrenergic (b-AR), 5-HT2 and N-methyl-D-aspartate (NMDA) receptors have been implicated in depression. Several studies, investigating the effect of treatment with HP and quercetin on these different receptor densities, were undertaken using radioactive binding assays. Treatment with HP resulted in significant down regulation of b-AR and NMDA receptor densities and up-regulation of 5HT2 receptors. The effects on the b-AR and 5-HT2 receptors are similar to the results reported using HP in the Northern hemisphere, but the effect on the NMDA receptors is novel providing insight into the mode of action of HP. Apoptosis of neuronal cells has been implicated in neuro-degenerative and depressive disorders. Detection of apoptosis, using fluorescent microscopy observed through the labelling of DNA strand breaks, showed a decrease in the amount of apoptosis in the animals treated with HP and quercetin. This adds further support for the use of HP as an antidepressant and these results are similar to results reported from the Northern hemisphere. The results of all these studies suggest that the quality of the locally produced tincture is similar in efficacy to that of the standardised product of the Northern hemisphere.
- Full Text:
- Date Issued: 2005
- Authors: Stephens, Linda Lee
- Date: 2005
- Subjects: Hypericum perforatum -- Physiological effect Hypericum perforatum -- Therapeutic use Antidepressants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3793 , http://hdl.handle.net/10962/d1003271
- Description: Hypericum perforatum is a herbal medicine that has been used for centuries for the treatment of depression. Many studies have been conducted in the Northern hemisphere on the efficacy of the HP extracts produced there. These studies include clinical trials and pharmacological investigations using a standardised HP extract or a fraction of the HP extract containing certain compounds, such as hypericin, pseudohypericin, hyperforin and several of the flavonoids thought to be responsible for the antidepressant activity. The mechanism of action of HP and its constituents is still not completely clear and it is speculated that the antidepressant activity is the result of several of the compounds acting synergistically. HP is indigenous to and also cultivated in the Western Cape of South Africa. Extracts from these plants are sold in the local health shops and there are no previous studies evaluating the efficacy of these products. The aim of this thesis is to investigate the antidepressant activity of one of these products and two of its constituents, quercetin and caffeic acid, to gain further insight into their mode of antidepressant action and to compare these results with similar studies which used a standardised extract produced in the northern hemisphere. The first study investigated the effect of HP, quercetin and caffeic acid on pineal metabolism. Changes in the synthesis of melatonin produced by the pineal gland have been implicated in depression. The results showed an increase in the level of melatonin produced in the animals treated with quercetin, which suggests that this compound may mediate antidepressant activity through such a mechanism. There are no previous reports on the in vivo effects of HP or any of its constituents on pineal metabolism. The second study investigated the effect of HP, quercetin and caffeic acid on the activity of the liver enzyme, tryptophan-2,3-dioxygenase (TDO). Inhibition of this enzyme has been shown to increase plasma levels of tryptophan, a precursor of serotonin and thereby result in increased serotonin levels in the brain. Low levels of serotonin in the brain have been implicated in depression. This study revealed significant inhibition of TDO by caffeic acid and this suggests that this constituent of HP could be contributing to its antidepressant activity through such a mechanism. There are no previous reports investigating the in vivo effect of HP or any of its constituents on TDO activity. Modulation of the levels of indoleamines, serotonin (5-HT) and dopamine (DA) as well as the metabolites, 3,4 dihydroxyphenyl acetic acid (DOPAC), 5-hydroxyindole acetic acid (5-HIAA) and homovallinic acid (HVA) in the brain have been implicated in the neuropharmacology of depression. Different studies using enzyme-linked immunosorbant assay (ELISA), high performance liquid chromatography with electrochemical detection (HPLC-ECD) and liquid chromatography-mass spectrometry (LC-MS) were used to determine changes in the levels of these indoleamines brought about after treatment with HP caffeic acid and quercetin. The results of the ELISA study showed significant increases in 5-HT levels in the brains of the animals treated with caffeic acid and quercetin. The results of the HPLC-ECD studies also revealed significant increases in 5-HT levels and a decrease in the turnover of 5-HT in the animals treated with quercetin. A significant increase in DA levels in the animals treated with quercetin was shown in both the HPLC-ECD and LC-MS studies. There was also an increase in DA turnover in the animals treated with HP shown in the HPLC-ECD and LC-MS studies. These results suggest that HP and its constituents, quercetin and caffeic acid mediate their antidepressant effects through serotonergic and dopaminergic neurotransmission. Adaptive changes in the density of b-adrenergic (b-AR), 5-HT2 and N-methyl-D-aspartate (NMDA) receptors have been implicated in depression. Several studies, investigating the effect of treatment with HP and quercetin on these different receptor densities, were undertaken using radioactive binding assays. Treatment with HP resulted in significant down regulation of b-AR and NMDA receptor densities and up-regulation of 5HT2 receptors. The effects on the b-AR and 5-HT2 receptors are similar to the results reported using HP in the Northern hemisphere, but the effect on the NMDA receptors is novel providing insight into the mode of action of HP. Apoptosis of neuronal cells has been implicated in neuro-degenerative and depressive disorders. Detection of apoptosis, using fluorescent microscopy observed through the labelling of DNA strand breaks, showed a decrease in the amount of apoptosis in the animals treated with HP and quercetin. This adds further support for the use of HP as an antidepressant and these results are similar to results reported from the Northern hemisphere. The results of all these studies suggest that the quality of the locally produced tincture is similar in efficacy to that of the standardised product of the Northern hemisphere.
- Full Text:
- Date Issued: 2005
An investigation into the neuroprotective properties of acetylsalicylic acid and acetaminophen
- Authors: Maharaj, Himant
- Date: 2005
- Subjects: Aspirin Acetaminophen Analgesics Alzheimer's disease -- Treatment Parkinson's disease
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3769 , http://hdl.handle.net/10962/d1003247
- Description: The potent analgesic property of acetylsalicylic acid and acetaminophen makes these the most commonly used analgesics in the world. Easy accessibility and cost effectiveness of these agents are attractive to patients seeking pain relief. However, the abuse of nonnarcotic analgesics such as acetaminophen and acetylsalicylic acid by alcoholics and patients seeking to relieve dysphoric moods is well documented. These agents therefore impact on the brain neurotransmitter levels and therefore all processes involved in the synthesis and metabolism of neurotransmitters may be affected. The use of non-narcotic analgesics has been reported to reduce the incidence of neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The mode of action by which acetylsalicylic acid and acetaminophen elicit neuroprotection is however unclear as many mechanisms of action have been inconclusively postulated. The first part of this study aims to elucidate the various mechanisms by which acetylsalicylic acid and acetaminophen affect the enzymes responsible for the catabolism of tryptophan, which is a precursor for the mood elevating neurotransmitter serotonin, as well as to investigate whether these agents alter the interplay between serotonin and pineal indole metabolism. The second part of this study focuses on the neuroprotective properties of acetylsalicylic acid and acetaminophen utilizing the neurotoxic metabolite of the kynurenine pathway, quinolinic acid and the potent Parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). The ability of acetylsalicylic acid and acetaminophen to alter TRP metabolism was determined by investigating the effects of these agents on the primary enzymes of the kynurenine pathway i.e. tryptophan 2, 3-dioxygenase and indoleamine 2,3-dioxygenase as well as to investigate whether these agents would have any effects on 3-hydroxyanthranilic acid oxygenase. 3-Hydroxyanthranilic acid oxygenase is the enzyme responsible for the synthesis of quinolinic acid. Acetylsalicylic acid and acetaminophen alter tryptophan metabolism by inhibiting tryptophan 2, 3-dioxygenase and indoleamine 2,3-dioxygenase thus increasing the availability of tryptophan for the production of serotonin. Acetylsalicylic acid and acetaminophen also inhibit 3-hydroxyanthranilic acid oxygenase thus implying that these agents could reduce quinolinic acid production. Acetaminophen administration in rats induces a rise in serotonin and norepinephrine in the forebrain. Acetylsalicylic acid curtails the acetaminophen-induced rise in brain norepinephrine levels as well as enhances serotonin metabolism, indicating that analgesic preparations containing both agents would be advantageous, as this would prevent acetaminophen-induced mood elevation. The results from the pineal indole metabolism study show that acetylsalicylic acid enhances pineal metabolism of serotonin whereas acetaminophen induces an increase in melatonin levels in the pineal gland. Neuronal damage due to oxidative stress has been implicated in several neurodegenerative disorders such as AD and PD. The second part of the study aims to elucidate and characterize the mechanism by which acetylsalicylic acid and acetaminophen afford neuroprotection. The hippocampus is an important region of the brain responsible for memory. Agents such as quinolinic acid that are known to induce stress in this area have detrimental effects and could lead to various types of dementia. The striatum is also a vulnerable region to oxidative stress and hence (MPP+), which is toxic for this particular region of the brain, was also used as a neurotoxin. The results show that ASA and acetaminophen alone and in combination, are potent superoxide anion scavengers. In addition, the results imply that these agents offer protection against oxidative stress and lipid peroxidation induced by several neurotoxins in rat brain particularly, the hippocampus and striatum. Histological studies, using Nissl staining and Acid fuchsin, show that acetylsalicylic acid and acetaminophen are able to protect hippocampal neurons against quinolinic acidinduced necrotic cell death. Immunohistochemical investigations show that QA induces apoptotic cell death in the hippocampus, which is inhibited by ASA and acetaminophen. In addition, ASA and acetaminophen inhibited MPP+ induced apoptotic cell death in the rat striatum. The study also sought to elucidate possible mechanisms by which ASA and acetaminophen exert neuroprotective effects in the presence of MPP+ as these agents are shown to prevent the MPP+-induced reduction in dopamine levels. The results show that acetylsalicylic acid and acetaminophen inhibit the action of this neurotoxin on the mitochondrial electron transport chain, a common source of free radicals in the cell. In addition, these agents were shown to block the neurotoxic effects of MPP+ on the enzymatic defence system of the brain i.e. superoxide dismutase, glutathione peroxidase and catalase. The reduction in glutathione levels induced by MPP+ is significantly inhibited by acetylsalicylic acid and acetaminophen. The results imply that these agents are capable of not only scavenging free radicals but also enhance the cell defence mechanism against toxicity in the presence of MPP+. These agents also block the MPP+-induced inhibition of dopamine uptake into the cell. This would therefore reduce auto-oxidation of dopamine thus implying another mechanism by which these agents exert a neuroprotective role in MPP+-induced neurotoxicity. The discovery of neuroprotective properties of acetylsalicylic acid and acetaminophen is important considering the high usage of these agents and the increased incidence in neurological disorders. The findings of this thesis point to the need for clinical studies to be conducted as the results show acetylsalicylic acid and acetaminophen to have a definite role to play as antioxidants. This study therefore provides novel information regarding the neuroprotective effects of these agents and favours the use of these agents in the treatment of neurodegenerative disorders, such as AD and PD, in which oxidative stress is implicated.
- Full Text:
- Date Issued: 2005
- Authors: Maharaj, Himant
- Date: 2005
- Subjects: Aspirin Acetaminophen Analgesics Alzheimer's disease -- Treatment Parkinson's disease
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3769 , http://hdl.handle.net/10962/d1003247
- Description: The potent analgesic property of acetylsalicylic acid and acetaminophen makes these the most commonly used analgesics in the world. Easy accessibility and cost effectiveness of these agents are attractive to patients seeking pain relief. However, the abuse of nonnarcotic analgesics such as acetaminophen and acetylsalicylic acid by alcoholics and patients seeking to relieve dysphoric moods is well documented. These agents therefore impact on the brain neurotransmitter levels and therefore all processes involved in the synthesis and metabolism of neurotransmitters may be affected. The use of non-narcotic analgesics has been reported to reduce the incidence of neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The mode of action by which acetylsalicylic acid and acetaminophen elicit neuroprotection is however unclear as many mechanisms of action have been inconclusively postulated. The first part of this study aims to elucidate the various mechanisms by which acetylsalicylic acid and acetaminophen affect the enzymes responsible for the catabolism of tryptophan, which is a precursor for the mood elevating neurotransmitter serotonin, as well as to investigate whether these agents alter the interplay between serotonin and pineal indole metabolism. The second part of this study focuses on the neuroprotective properties of acetylsalicylic acid and acetaminophen utilizing the neurotoxic metabolite of the kynurenine pathway, quinolinic acid and the potent Parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). The ability of acetylsalicylic acid and acetaminophen to alter TRP metabolism was determined by investigating the effects of these agents on the primary enzymes of the kynurenine pathway i.e. tryptophan 2, 3-dioxygenase and indoleamine 2,3-dioxygenase as well as to investigate whether these agents would have any effects on 3-hydroxyanthranilic acid oxygenase. 3-Hydroxyanthranilic acid oxygenase is the enzyme responsible for the synthesis of quinolinic acid. Acetylsalicylic acid and acetaminophen alter tryptophan metabolism by inhibiting tryptophan 2, 3-dioxygenase and indoleamine 2,3-dioxygenase thus increasing the availability of tryptophan for the production of serotonin. Acetylsalicylic acid and acetaminophen also inhibit 3-hydroxyanthranilic acid oxygenase thus implying that these agents could reduce quinolinic acid production. Acetaminophen administration in rats induces a rise in serotonin and norepinephrine in the forebrain. Acetylsalicylic acid curtails the acetaminophen-induced rise in brain norepinephrine levels as well as enhances serotonin metabolism, indicating that analgesic preparations containing both agents would be advantageous, as this would prevent acetaminophen-induced mood elevation. The results from the pineal indole metabolism study show that acetylsalicylic acid enhances pineal metabolism of serotonin whereas acetaminophen induces an increase in melatonin levels in the pineal gland. Neuronal damage due to oxidative stress has been implicated in several neurodegenerative disorders such as AD and PD. The second part of the study aims to elucidate and characterize the mechanism by which acetylsalicylic acid and acetaminophen afford neuroprotection. The hippocampus is an important region of the brain responsible for memory. Agents such as quinolinic acid that are known to induce stress in this area have detrimental effects and could lead to various types of dementia. The striatum is also a vulnerable region to oxidative stress and hence (MPP+), which is toxic for this particular region of the brain, was also used as a neurotoxin. The results show that ASA and acetaminophen alone and in combination, are potent superoxide anion scavengers. In addition, the results imply that these agents offer protection against oxidative stress and lipid peroxidation induced by several neurotoxins in rat brain particularly, the hippocampus and striatum. Histological studies, using Nissl staining and Acid fuchsin, show that acetylsalicylic acid and acetaminophen are able to protect hippocampal neurons against quinolinic acidinduced necrotic cell death. Immunohistochemical investigations show that QA induces apoptotic cell death in the hippocampus, which is inhibited by ASA and acetaminophen. In addition, ASA and acetaminophen inhibited MPP+ induced apoptotic cell death in the rat striatum. The study also sought to elucidate possible mechanisms by which ASA and acetaminophen exert neuroprotective effects in the presence of MPP+ as these agents are shown to prevent the MPP+-induced reduction in dopamine levels. The results show that acetylsalicylic acid and acetaminophen inhibit the action of this neurotoxin on the mitochondrial electron transport chain, a common source of free radicals in the cell. In addition, these agents were shown to block the neurotoxic effects of MPP+ on the enzymatic defence system of the brain i.e. superoxide dismutase, glutathione peroxidase and catalase. The reduction in glutathione levels induced by MPP+ is significantly inhibited by acetylsalicylic acid and acetaminophen. The results imply that these agents are capable of not only scavenging free radicals but also enhance the cell defence mechanism against toxicity in the presence of MPP+. These agents also block the MPP+-induced inhibition of dopamine uptake into the cell. This would therefore reduce auto-oxidation of dopamine thus implying another mechanism by which these agents exert a neuroprotective role in MPP+-induced neurotoxicity. The discovery of neuroprotective properties of acetylsalicylic acid and acetaminophen is important considering the high usage of these agents and the increased incidence in neurological disorders. The findings of this thesis point to the need for clinical studies to be conducted as the results show acetylsalicylic acid and acetaminophen to have a definite role to play as antioxidants. This study therefore provides novel information regarding the neuroprotective effects of these agents and favours the use of these agents in the treatment of neurodegenerative disorders, such as AD and PD, in which oxidative stress is implicated.
- Full Text:
- Date Issued: 2005
An investigation into the possible neuroprotective or neurotoxic properties of metrifonate
- Authors: Ramsunder, Adrusha
- Date: 2005 , 2013-06-11
- Subjects: Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3833 , http://hdl.handle.net/10962/d1007560 , Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Description: Alzheimer's disease is a progressive neurodegenerative disorder, in which there is a marked decline in neurotransmitters, especially those of the cholinergic pathways. One of the approaches to the symptomatic treatment of Alzheimer's disease is the inhibition of the breakdown of the neurotransmitter acetylcholine, using an acetylcholinesterase inhibitor. One such drug tested, is the organophosphate, metrifonate. Any drug used for the treatment of neurodegenerative disorders should preferably not induce further neurological damage. Thus, in the present study, we investigated whether or not metrifonate is neuroprotective. The in vivo and in vitro effect of this drug on free radicals generation shows that metrifonate increases the level ofthese reactive species. Lipid peroxidation induced using quinolinic acid (QA) and iron (II) and show that metrifonate increased the peroxidative damage induced by using quinolinic acid. Metrifonate is also able to induce lipid peroxidation both in vivo and in vitro. This was reduced in vitro in the presence of melatonin. Using iron (II), in vi/ro, there was no significant difference in the level of lipid peroxidation in the presence of this drug. An investigation of the activity of the mitochondrial electron transport chain and complex I of the electron transport chain in the presence of metrifonate revealed that metrifonate reduces the activity of the electron transport chain at the level of complex I. The activity of the mitochondrial electron transport chain was restored in the presence of melatonin. Pineal organ culture showed that metrifonate does not increase melatonin production. Histological and apoptosis studies show that tissue necrosis and apoptosis respectively, occur in the presence of this agent, which is reduced in the presence of melatonin. Metal binding studies were performed USing ultraviolet spectroscopy, and electrochemical analysis to examine the interaction of metrifonate with iron (II) and iron (III). No shift in the peak was observed in the ultraviolet spectrum when iron (ll) was added to metrifonate. Electrochemical studies show that there may be a very weak or no ligand formed between the metal and drug. This study shows that while drugs such as metrifonate may be beneficial in restoring cognitive function in Alzheimer's disease, it could also have the potential to enhance neurodegeneration, thus worsening the condition, in the long term. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
- Authors: Ramsunder, Adrusha
- Date: 2005 , 2013-06-11
- Subjects: Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3833 , http://hdl.handle.net/10962/d1007560 , Nervous system -- Degeneration -- Treatment , Neurotoxic agents , Alzheimer's disease -- Treatment , Metrifonate
- Description: Alzheimer's disease is a progressive neurodegenerative disorder, in which there is a marked decline in neurotransmitters, especially those of the cholinergic pathways. One of the approaches to the symptomatic treatment of Alzheimer's disease is the inhibition of the breakdown of the neurotransmitter acetylcholine, using an acetylcholinesterase inhibitor. One such drug tested, is the organophosphate, metrifonate. Any drug used for the treatment of neurodegenerative disorders should preferably not induce further neurological damage. Thus, in the present study, we investigated whether or not metrifonate is neuroprotective. The in vivo and in vitro effect of this drug on free radicals generation shows that metrifonate increases the level ofthese reactive species. Lipid peroxidation induced using quinolinic acid (QA) and iron (II) and show that metrifonate increased the peroxidative damage induced by using quinolinic acid. Metrifonate is also able to induce lipid peroxidation both in vivo and in vitro. This was reduced in vitro in the presence of melatonin. Using iron (II), in vi/ro, there was no significant difference in the level of lipid peroxidation in the presence of this drug. An investigation of the activity of the mitochondrial electron transport chain and complex I of the electron transport chain in the presence of metrifonate revealed that metrifonate reduces the activity of the electron transport chain at the level of complex I. The activity of the mitochondrial electron transport chain was restored in the presence of melatonin. Pineal organ culture showed that metrifonate does not increase melatonin production. Histological and apoptosis studies show that tissue necrosis and apoptosis respectively, occur in the presence of this agent, which is reduced in the presence of melatonin. Metal binding studies were performed USing ultraviolet spectroscopy, and electrochemical analysis to examine the interaction of metrifonate with iron (II) and iron (III). No shift in the peak was observed in the ultraviolet spectrum when iron (ll) was added to metrifonate. Electrochemical studies show that there may be a very weak or no ligand formed between the metal and drug. This study shows that while drugs such as metrifonate may be beneficial in restoring cognitive function in Alzheimer's disease, it could also have the potential to enhance neurodegeneration, thus worsening the condition, in the long term. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
Development and assessment of medicines information for antiretroviral therapy in Sub-Saharan Africa
- Authors: Mwingira, Betty
- Date: 2005
- Subjects: AIDS (Disease) -- Africa, Sub-Saharan , AIDS (Disease) -- Treatment -- Africa, Sub-Saharan , AIDS (Disease) -- Juvenile literature -- Africa, Sub-Saharan , HIV infections -- Treatment -- Africa, Sub-Saharan , HIV infections -- Africa, Sub-Saharan , Antiretroviral agents -- Africa, Sub-Saharan , HIV-positive persons -- Care -- Africa, Sub-Saharan , Hiv-positive persons -- Medical care -- Africa, Sub-Saharan , AIDS (Disease) -- Study and teaching -- Africa, Sub-Saharan
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3779 , http://hdl.handle.net/10962/d1003257 , AIDS (Disease) -- Africa, Sub-Saharan , AIDS (Disease) -- Treatment -- Africa, Sub-Saharan , AIDS (Disease) -- Juvenile literature -- Africa, Sub-Saharan , HIV infections -- Treatment -- Africa, Sub-Saharan , HIV infections -- Africa, Sub-Saharan , Antiretroviral agents -- Africa, Sub-Saharan , HIV-positive persons -- Care -- Africa, Sub-Saharan , Hiv-positive persons -- Medical care -- Africa, Sub-Saharan , AIDS (Disease) -- Study and teaching -- Africa, Sub-Saharan
- Full Text:
- Date Issued: 2005
Development and assessment of medicines information for antiretroviral therapy in Sub-Saharan Africa
- Authors: Mwingira, Betty
- Date: 2005
- Subjects: AIDS (Disease) -- Africa, Sub-Saharan , AIDS (Disease) -- Treatment -- Africa, Sub-Saharan , AIDS (Disease) -- Juvenile literature -- Africa, Sub-Saharan , HIV infections -- Treatment -- Africa, Sub-Saharan , HIV infections -- Africa, Sub-Saharan , Antiretroviral agents -- Africa, Sub-Saharan , HIV-positive persons -- Care -- Africa, Sub-Saharan , Hiv-positive persons -- Medical care -- Africa, Sub-Saharan , AIDS (Disease) -- Study and teaching -- Africa, Sub-Saharan
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3779 , http://hdl.handle.net/10962/d1003257 , AIDS (Disease) -- Africa, Sub-Saharan , AIDS (Disease) -- Treatment -- Africa, Sub-Saharan , AIDS (Disease) -- Juvenile literature -- Africa, Sub-Saharan , HIV infections -- Treatment -- Africa, Sub-Saharan , HIV infections -- Africa, Sub-Saharan , Antiretroviral agents -- Africa, Sub-Saharan , HIV-positive persons -- Care -- Africa, Sub-Saharan , Hiv-positive persons -- Medical care -- Africa, Sub-Saharan , AIDS (Disease) -- Study and teaching -- Africa, Sub-Saharan
- Full Text:
- Date Issued: 2005
Formulation and assessment of verapamil sustained release tablets
- Khamanga, Sandile Maswazi Malungelo
- Authors: Khamanga, Sandile Maswazi Malungelo
- Date: 2005
- Subjects: Verapamil , Tablets (Medicine) , Drugs -- Administration , Cardiovascular agents , Calcium -- Antagonists , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3869 , http://hdl.handle.net/10962/d1018236
- Description: The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
- Full Text:
- Date Issued: 2005
- Authors: Khamanga, Sandile Maswazi Malungelo
- Date: 2005
- Subjects: Verapamil , Tablets (Medicine) , Drugs -- Administration , Cardiovascular agents , Calcium -- Antagonists , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3869 , http://hdl.handle.net/10962/d1018236
- Description: The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
- Full Text:
- Date Issued: 2005
In vitro release of ketoprofen from proprietary and extemporaneously manufactured gels
- Tettey-Amlalo, Ralph Nii Okai
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2005
- Subjects: Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3797 , http://hdl.handle.net/10962/d1003275 , Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Description: Ketoprofen is a potent non-steroidal anti-inflammatory drug which is used for the treatment of rheumatoid arthritis. The oral administration of ketoprofen can cause gastric irritation and adverse renal effects. Transdermal delivery of the drug can bypass gastrointestinal disturbances and provide relatively consistent drug concentrations at the site of administration. The release of ketoprofen from proprietary gel products from three different countries was evaluated by comparing the in vitro release profiles. Twenty extemporaneously prepared ketoprofen gel formulations using Carbopol® polymers were manufactured. The effect of polymer, drug concentration, pH and solvent systems on the in vitro release of ketoprofen from these formulations were investigated. The gels were evaluated for drug content and pH. The release of the drug from all the formulations obeyed the Higuchi principle. Two static FDA approved diffusion cells, namely the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell, were compared by measuring the in vitro release rate of ketoprofen from all the gel formulations through a synthetic silicone membrane. High-performance liquid chromatography and ultraviolet spectrophotometric analytical techniques were both used for the analysis of ketoprofen. The validated methods were employed for the determination of ketoprofen in the sample solutions taken from the receptor fluid. Two of the three proprietary products registered under the same manufacturing license exhibited similar results whereas the third product differed significantly. Among the variables investigated, the vehicle pH and solvent composition were found have the most significant effect on the in vitro release of ketoprofen from Carbopol® polymers. The different grades of Carbopol® polymers showed statistically significantly different release kinetics with respect to lag time. When evaluating the proprietary products, both the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell were deemed adequate although higher profiles were generally obtained from the European Pharmacopoeia diffusion cells. Smoother diffusion profiles were obtained from samples analysed by high-performance liquid chromatography than by ultraviolet spectrophotometry in both diffusion cells. Sample solutions taken from Franz diffusion cells and analysed by ultraviolet spectrophotometry also produced smooth diffusion profiles. Erratic and higher diffusion profiles were observed with samples taken from the European Pharmacopoeia diffusion cell and analysed by ultraviolet spectrophotometry. The choice of diffusion cells and analytical procedure in product development must be weighed against the relatively poor reproducibility as observed with the European Pharmacopoeia diffusion cell.
- Full Text:
- Date Issued: 2005
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2005
- Subjects: Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3797 , http://hdl.handle.net/10962/d1003275 , Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Description: Ketoprofen is a potent non-steroidal anti-inflammatory drug which is used for the treatment of rheumatoid arthritis. The oral administration of ketoprofen can cause gastric irritation and adverse renal effects. Transdermal delivery of the drug can bypass gastrointestinal disturbances and provide relatively consistent drug concentrations at the site of administration. The release of ketoprofen from proprietary gel products from three different countries was evaluated by comparing the in vitro release profiles. Twenty extemporaneously prepared ketoprofen gel formulations using Carbopol® polymers were manufactured. The effect of polymer, drug concentration, pH and solvent systems on the in vitro release of ketoprofen from these formulations were investigated. The gels were evaluated for drug content and pH. The release of the drug from all the formulations obeyed the Higuchi principle. Two static FDA approved diffusion cells, namely the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell, were compared by measuring the in vitro release rate of ketoprofen from all the gel formulations through a synthetic silicone membrane. High-performance liquid chromatography and ultraviolet spectrophotometric analytical techniques were both used for the analysis of ketoprofen. The validated methods were employed for the determination of ketoprofen in the sample solutions taken from the receptor fluid. Two of the three proprietary products registered under the same manufacturing license exhibited similar results whereas the third product differed significantly. Among the variables investigated, the vehicle pH and solvent composition were found have the most significant effect on the in vitro release of ketoprofen from Carbopol® polymers. The different grades of Carbopol® polymers showed statistically significantly different release kinetics with respect to lag time. When evaluating the proprietary products, both the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell were deemed adequate although higher profiles were generally obtained from the European Pharmacopoeia diffusion cells. Smoother diffusion profiles were obtained from samples analysed by high-performance liquid chromatography than by ultraviolet spectrophotometry in both diffusion cells. Sample solutions taken from Franz diffusion cells and analysed by ultraviolet spectrophotometry also produced smooth diffusion profiles. Erratic and higher diffusion profiles were observed with samples taken from the European Pharmacopoeia diffusion cell and analysed by ultraviolet spectrophotometry. The choice of diffusion cells and analytical procedure in product development must be weighed against the relatively poor reproducibility as observed with the European Pharmacopoeia diffusion cell.
- Full Text:
- Date Issued: 2005
Marine biotechnology : evaluation and development of methods for the discovery of natural products from fungi
- Authors: Pather, Simisha
- Date: 2005 , 2013-06-18
- Subjects: Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3839 , http://hdl.handle.net/10962/d1007652 , Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Description: One of the major impediments in the development of marine natural products is the provision of biologically active natural products in sufficient quantity for complete pharmacological evaluation, clinical trials and eventual commercial production. Marine microorganisms show great promise in providing a renewable source of biologically active natural products. The main aim of this study was to develop and evaluate methods for the isolation, identification and cultivation of marine fungi from the South African marine environment for the production of biologically active secondary metabolites. Twenty-four species of fungi were isolated from marine algae collected from the intertidal zone near Port Alfred, South Africa. The fungi were cultivated in small-scale under static and agitated conditions and their crude intra- and extracellular organic extracts were screened by ¹H NMR and a series of bioassays. Using this as a basis, one isolate was selected for further study. By analyses of the lTS1 region of the ribosomal DNA, the fungal isolate was identified as a marine-derived isolate of Eurotium rubrum (Aspergillus ruber). Although E. rubrum has been isolated from the marine environment, no investigations have been undertaken to determine the adaptation of these isolates to the marine environment. In order to optimise productivity, creativity and incubation time, the fungus was cultivated in small-scale using a variety of carbon (glucose, fructose, lactose, sucrose, marmitol and maltose) and nitrogen sources (ammonium tartrate, urea, peptone and yeast extract). An HPLC-DAD method was developed to assess the metabolic creativity and productivity under different fermentation conditions. Distinctive variations in the range and yield of metabolites produced as well as morphology and growth time were observed. The crude extracts from all fermentations were combined and six known compounds were isolated by reversed-phase chromatography and their structures elucidated by spectroscopic techniques. The known compounds were fIavoglaucin, aspergin, isodihydroauroglaucin, isotetrahydroauroglaucin, neoechinuline A and physcion. Neoechinuline A, isodihydroauroglaucin and isotetrahydroauroglaucin showed activity against oesophageal and cervical cancer cell lines.
- Full Text:
- Date Issued: 2005
- Authors: Pather, Simisha
- Date: 2005 , 2013-06-18
- Subjects: Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3839 , http://hdl.handle.net/10962/d1007652 , Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Description: One of the major impediments in the development of marine natural products is the provision of biologically active natural products in sufficient quantity for complete pharmacological evaluation, clinical trials and eventual commercial production. Marine microorganisms show great promise in providing a renewable source of biologically active natural products. The main aim of this study was to develop and evaluate methods for the isolation, identification and cultivation of marine fungi from the South African marine environment for the production of biologically active secondary metabolites. Twenty-four species of fungi were isolated from marine algae collected from the intertidal zone near Port Alfred, South Africa. The fungi were cultivated in small-scale under static and agitated conditions and their crude intra- and extracellular organic extracts were screened by ¹H NMR and a series of bioassays. Using this as a basis, one isolate was selected for further study. By analyses of the lTS1 region of the ribosomal DNA, the fungal isolate was identified as a marine-derived isolate of Eurotium rubrum (Aspergillus ruber). Although E. rubrum has been isolated from the marine environment, no investigations have been undertaken to determine the adaptation of these isolates to the marine environment. In order to optimise productivity, creativity and incubation time, the fungus was cultivated in small-scale using a variety of carbon (glucose, fructose, lactose, sucrose, marmitol and maltose) and nitrogen sources (ammonium tartrate, urea, peptone and yeast extract). An HPLC-DAD method was developed to assess the metabolic creativity and productivity under different fermentation conditions. Distinctive variations in the range and yield of metabolites produced as well as morphology and growth time were observed. The crude extracts from all fermentations were combined and six known compounds were isolated by reversed-phase chromatography and their structures elucidated by spectroscopic techniques. The known compounds were fIavoglaucin, aspergin, isodihydroauroglaucin, isotetrahydroauroglaucin, neoechinuline A and physcion. Neoechinuline A, isodihydroauroglaucin and isotetrahydroauroglaucin showed activity against oesophageal and cervical cancer cell lines.
- Full Text:
- Date Issued: 2005
An investigation into the neuroprotective effects of melatonin in a model of rotenone-induced neurodegeneration
- Authors: Kadanthode, Rubina John
- Date: 2004
- Subjects: Melatonin , Nervous system -- Degeneration -- Treatment , Rotenone
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3763 , http://hdl.handle.net/10962/d1003241 , Melatonin , Nervous system -- Degeneration -- Treatment , Rotenone
- Description: Parkinson’s disease, one of the most common neurodegenerative disorders associated with ageing, is characterised by abnormal and profound loss of nigrostriatal dopaminergic neurons. The cause of Parkinson’s disease is unknown, but epidemiological studies suggest an association with pesticides and other environmental toxins, and biochemical studies implicate oxidative damage and mitochondrial impairment, particularly at the level of complex I enzyme. Recently, rotenone, a commonly used organic pesticide and a classical inhibitor of mitochondrial complex I has been reported to reproduce the specific features of Parkinson’s disease in rodents. The mitochondrial respiratory chain is one of the most important sites of reactive oxygen species production under physiological conditions. Toxic free radicals have been implicated in a variety of neurodegenerative diseases as well as ageing itself. Melatonin, a secretory product of the pineal gland is a multifaceted free radical scavenger and natural antioxidant. In the present study, the neuroprotective effects of melatonin against the environmental neurotoxin, rotenone was investigated. Initial studies showed that inhibition of mitochondrial complex I enzyme by rotenone induced superoxide radical generation. Melatonin, administered to the rat in vivo and in vitro was able to offer neuroprotection by curtailing the production of superoxide radicals induced by rotenone. Mitochondria, being the major target of rotenone, the effects of melatonin were investigated at the mitochondrial level. Melatonin was able to increase the electron transport chain activity thus preventing the respiratory inhibition by rotenone. The pineal hormone also counteracted the action of rotenone on complex I enzyme. These results suggest melatonin’s ability to potentially limit the free radical generation and thereby modulate the mitochondrial functions. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. Melatonin also offered significant protection in vivo and in vitro against rotenone induced lipid peroxidation. Since iron plays a major role in oxidative damage and in the progression of Parkinson’s disease, the effect of melatonin on both rotenone and iron induced lipid peroxidation was investigated, the results of which show that melatonin affords protection and this was suggested to be due to its interaction with the rotenone-iron complex that might have formed. Electrochemical studies were further used to characterise the interactions between melatonin, rotenone and iron (III). Melatonin was shown to bind with iron and thus reducing their toxicity. Histological studies were undertaken to assess the effects of melatonin on rotenone induced toxicity on the dopaminergic neurons in the rat brain. Rotenone treated brains showed extensive neuronal damage whereas with melatonin less damage was observed. Rotenone induces apoptosis via reactive oxygen species production and apoptotic cell death has been identified in PD brains. Furthermore, the apoptotic cell death was detected and quantified by the TUNEL staining. Rotenone treated sections showed signs of apoptosis whereas with melatonin, less apoptotic damage was observed. The findings of this study indicate that the neurohormone, melatonin may protect against rotenone-induced neurodegeneration. Since melatonin production falls substantially during ageing, the loss of this antioxidant is theorized to be instrumental in the degenerative processes associated with advanced age. Considering how devastating diseases such as Parkinson’s disease, are to a patient and the patient’s families, the discovery of protective agents are a matter of urgency. Further investigations using the pesticide model will help to determine the involvement of environmental exposure in the pathogenesis of human diseases as well as to test therapeutic strategies for the treatment of such diseases.
- Full Text:
- Date Issued: 2004
- Authors: Kadanthode, Rubina John
- Date: 2004
- Subjects: Melatonin , Nervous system -- Degeneration -- Treatment , Rotenone
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3763 , http://hdl.handle.net/10962/d1003241 , Melatonin , Nervous system -- Degeneration -- Treatment , Rotenone
- Description: Parkinson’s disease, one of the most common neurodegenerative disorders associated with ageing, is characterised by abnormal and profound loss of nigrostriatal dopaminergic neurons. The cause of Parkinson’s disease is unknown, but epidemiological studies suggest an association with pesticides and other environmental toxins, and biochemical studies implicate oxidative damage and mitochondrial impairment, particularly at the level of complex I enzyme. Recently, rotenone, a commonly used organic pesticide and a classical inhibitor of mitochondrial complex I has been reported to reproduce the specific features of Parkinson’s disease in rodents. The mitochondrial respiratory chain is one of the most important sites of reactive oxygen species production under physiological conditions. Toxic free radicals have been implicated in a variety of neurodegenerative diseases as well as ageing itself. Melatonin, a secretory product of the pineal gland is a multifaceted free radical scavenger and natural antioxidant. In the present study, the neuroprotective effects of melatonin against the environmental neurotoxin, rotenone was investigated. Initial studies showed that inhibition of mitochondrial complex I enzyme by rotenone induced superoxide radical generation. Melatonin, administered to the rat in vivo and in vitro was able to offer neuroprotection by curtailing the production of superoxide radicals induced by rotenone. Mitochondria, being the major target of rotenone, the effects of melatonin were investigated at the mitochondrial level. Melatonin was able to increase the electron transport chain activity thus preventing the respiratory inhibition by rotenone. The pineal hormone also counteracted the action of rotenone on complex I enzyme. These results suggest melatonin’s ability to potentially limit the free radical generation and thereby modulate the mitochondrial functions. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. Melatonin also offered significant protection in vivo and in vitro against rotenone induced lipid peroxidation. Since iron plays a major role in oxidative damage and in the progression of Parkinson’s disease, the effect of melatonin on both rotenone and iron induced lipid peroxidation was investigated, the results of which show that melatonin affords protection and this was suggested to be due to its interaction with the rotenone-iron complex that might have formed. Electrochemical studies were further used to characterise the interactions between melatonin, rotenone and iron (III). Melatonin was shown to bind with iron and thus reducing their toxicity. Histological studies were undertaken to assess the effects of melatonin on rotenone induced toxicity on the dopaminergic neurons in the rat brain. Rotenone treated brains showed extensive neuronal damage whereas with melatonin less damage was observed. Rotenone induces apoptosis via reactive oxygen species production and apoptotic cell death has been identified in PD brains. Furthermore, the apoptotic cell death was detected and quantified by the TUNEL staining. Rotenone treated sections showed signs of apoptosis whereas with melatonin, less apoptotic damage was observed. The findings of this study indicate that the neurohormone, melatonin may protect against rotenone-induced neurodegeneration. Since melatonin production falls substantially during ageing, the loss of this antioxidant is theorized to be instrumental in the degenerative processes associated with advanced age. Considering how devastating diseases such as Parkinson’s disease, are to a patient and the patient’s families, the discovery of protective agents are a matter of urgency. Further investigations using the pesticide model will help to determine the involvement of environmental exposure in the pathogenesis of human diseases as well as to test therapeutic strategies for the treatment of such diseases.
- Full Text:
- Date Issued: 2004
An investigation into the neuroprotective properties of curcumin
- Authors: Daniel, Sheril
- Date: 2003
- Subjects: Turmeric -- Therapeutic use , Nervous system -- Degeneration -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3753 , http://hdl.handle.net/10962/d1003231 , Turmeric -- Therapeutic use , Nervous system -- Degeneration -- Prevention
- Description: An increasing number of studies show that nutritional antioxidants such as vitamin E and polyphenols are capable of blocking neuronal death in vitro and may have therapeutic properties in animal models of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. In the present study, the neuroprotective ability of one such polyphenolic antioxidant, curcumin, was investigated. Curcumin is the yellow curry spice derived from turmeric, and is widely used as a dietary component and herbal medicine in India. Most neurological disorders are postulated to have an oxidative or excitototoxic basis. Thus the effects of curcumin on oxidative stress in the rat brain were investigated. Curcumin, administered to the rat in vivo and in vitro, was able to exert protective effects on oxidative damage in the brain, induced by cyanide, a mitochondrial inhibitor. Curcumin also offered protection against quinolinic acid induced lipid peroxidation, and this protection was extended to lipid peroxidation induced by metals such as lead and cadmium in the rat brain. Experiments conducted on the pineal gland revealed an increased production of the neuroprotective hormone melatonin in presence of curcumin in vivo. The hippocampus is functionally related to vital behaviour and intellectual activities and is known to be a primary target for neuronal degeneration in the brains of patients with Alzheimer’s disease. Histological studies were undertaken to assess the effects of curcumin on lead induced toxicity on the rat hippocampus, the results of which show that curcumin affords significant protection to the hippocampus of the lead treated rats. This study also sought to elucidate possible mechanisms by which curcumin exerts its neuroprotective capabilities. Curcumin was found to inhibit the action of cyanide on the mitochondrial electron transport chain, one of the most common sources of free radicals. Electrochemical, UV/VIS and Infrared spectroscopy were used to characterise interactions between curcumin and the metals lead, cadmium, iron (II) and iron (III). Curcumin was shown to directly chelate these metals with the formation and isolation of two new curcumin complexes with lead, and one complex each with cadmium and iron (III). These results suggest chelation of toxic metals as a mechanism of neuroprotection afforded by curcumin. The need for neuroprotective agents is urgent considering the rapid rise in the elderly population and the proportionate increase in neurological disorders. The findings of this study indicate that curcumin, a well-established dietary antioxidant, is capable of playing a bigger role in neuroprotection, which needs to be further explored and exploited.
- Full Text:
- Date Issued: 2003
- Authors: Daniel, Sheril
- Date: 2003
- Subjects: Turmeric -- Therapeutic use , Nervous system -- Degeneration -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3753 , http://hdl.handle.net/10962/d1003231 , Turmeric -- Therapeutic use , Nervous system -- Degeneration -- Prevention
- Description: An increasing number of studies show that nutritional antioxidants such as vitamin E and polyphenols are capable of blocking neuronal death in vitro and may have therapeutic properties in animal models of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. In the present study, the neuroprotective ability of one such polyphenolic antioxidant, curcumin, was investigated. Curcumin is the yellow curry spice derived from turmeric, and is widely used as a dietary component and herbal medicine in India. Most neurological disorders are postulated to have an oxidative or excitototoxic basis. Thus the effects of curcumin on oxidative stress in the rat brain were investigated. Curcumin, administered to the rat in vivo and in vitro, was able to exert protective effects on oxidative damage in the brain, induced by cyanide, a mitochondrial inhibitor. Curcumin also offered protection against quinolinic acid induced lipid peroxidation, and this protection was extended to lipid peroxidation induced by metals such as lead and cadmium in the rat brain. Experiments conducted on the pineal gland revealed an increased production of the neuroprotective hormone melatonin in presence of curcumin in vivo. The hippocampus is functionally related to vital behaviour and intellectual activities and is known to be a primary target for neuronal degeneration in the brains of patients with Alzheimer’s disease. Histological studies were undertaken to assess the effects of curcumin on lead induced toxicity on the rat hippocampus, the results of which show that curcumin affords significant protection to the hippocampus of the lead treated rats. This study also sought to elucidate possible mechanisms by which curcumin exerts its neuroprotective capabilities. Curcumin was found to inhibit the action of cyanide on the mitochondrial electron transport chain, one of the most common sources of free radicals. Electrochemical, UV/VIS and Infrared spectroscopy were used to characterise interactions between curcumin and the metals lead, cadmium, iron (II) and iron (III). Curcumin was shown to directly chelate these metals with the formation and isolation of two new curcumin complexes with lead, and one complex each with cadmium and iron (III). These results suggest chelation of toxic metals as a mechanism of neuroprotection afforded by curcumin. The need for neuroprotective agents is urgent considering the rapid rise in the elderly population and the proportionate increase in neurological disorders. The findings of this study indicate that curcumin, a well-established dietary antioxidant, is capable of playing a bigger role in neuroprotection, which needs to be further explored and exploited.
- Full Text:
- Date Issued: 2003
An investigation into the physico-chemical and neuroprotective properties of melatonin and 6-hydroxymelatonin
- Authors: Maharaj, Deepa Sukhdev
- Date: 2003
- Subjects: Melatonin Nervous system -- Degeneration -- Treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3768 , http://hdl.handle.net/10962/d1003246
- Description: Until the beginning of this decade the antioxidant, melatonin, had been considered as little more than a tranquilizing hormone, responsible for regulating certain circadian and circannual rhythms. However, it is the discovery of melatonin as a free radical scavenger that has generated the most interest in recent years. The reduction of melatonin with age has been associated with neurodegenerative diseases such as Alzheimer’s disease (AD)and therefore, melatonin has been implicated to have an important clinical role in neuroprotection. Thus, for several years melatonin has attracted increasing attention from the general press with many advertisements touting this indoleamine to act as an aphrodisiac, rejuvenator, protector against diseases and a general wonder drug. However, melatonin formulations appear with no labelling for the correct storage conditions, dosage and side effects, as well as no control for purity and self-medicating with an unregulated product. In addition, there is much controversy surrounding the antioxidative properties of the indolemaine, 6-hydroxymelatonin (6-OHM). Therefore, the first part of this study aims to elucidate the physico-chemical and various stability characteristics of the pineal antioxidant, melatonin, while the second part is devoted to investigating the neuroprotective properties of the primary hepatic metabolite of melatonin, 6-OHM. The physical properties of melatonin were determined using various chemical techniques. This information served to both characterize and confirm the identity of melatonin raw material used in this study. In addition, this information serves to be essential as the physical properties of melatonin have not been reported in detail in literature, to date. Thereafter, using a validated high performance liquid chromatography (HPLC) method, the various physico-chemical and stability characteristics of melatonin were determined. Melatonin was shown to be extremely lipophilic, while the hygroscopic study indicates that melatonin raw material is extremely hygroscopic at temperatures above 40°C, whereas melatonin tablets are hygroscopic when left out of the original container. This study highlights the need for consumers to be aware of the proper storage of melatonin tablets to improve the stability and ensure long term integrity of the compound. Since, melatonin is most often administered orally, thus exposing it to a large variations in pH, within the gastrointestinal tract, it was decided to investigate the stability of melatonin over a range of pH’s and temperatures. The findings imply that melatonin is relatively stable at body temperature when ingested orally and that orally administered slow release preparations of melatonin should be relatively stable and therefore exhibit favourable bioavailability. However melatonin was shown to be unstable in solution. This provides important information and a challenge to the formulators of this drug substance in a liquid dosage form. An assessment of the photostability of melatonin dosage forms using International Committee on Harmonization (ICH) conditions revealed melatonin to be light sensitive and thus indicates a need for careful consideration of the packaging of these drug products. In addition a detailed assessment of the photochemistry and photoproducts formed during the UV photodegradation of melatonin is reported. Melatonin is shown to rapidly degrade in the presence of UV light, with the presence of oxygen accelerating the photodegradation. N1-acetyl-N2-formyl-5-methoxykynurenamine(AFMK) and 6-OHM were identified as the major photoproducts formed and these agents have been shown previously to retain antioxidant activity. One of the concerns of using melatonin in sunscreens is its photostability. However, it is reported in this study that the degraded solution of melatonin still possesses equipotent free radical scavenging ability as melatonin, despite the absence of melatonin in solution. In addition, melatonin is shown to reduce UV-induced oxidative stress in rat skin homogenate. Thus, these results make melatonin a likely candidate for inclusion in sunscreen preparations. Neuronal damage due to oxidative stress has been implicated in several neurodegenerative disorders. 6-OHM is not only formed as the major hepatic metabolite of melatonin, but also when melatonin reacts with toxic radicals as well as UV light. Thus the second part of the study aims to elucidate and further characterize the mechanism behind 6-OHM’s neuroprotection. The results show 6-OHM to be a more potent singlet oxygen and superoxide anion scavenger than melatonin. In addition, the results show 6-OHM to offer protection against, oxidative stress and lipid peroxidation induced by several neurotoxins in the rat brain and hippocampus. The hippocampus is an important region of the brain responsible for the formation of memory and any agent that induces stress in this area has detrimental effects and could lead to various types of dementia. Such agents include quinolinic acid (QA) and iron (II). Histological studies undertaken reveal that 6-OHM is able to protect hippocampal neurons against QA and iron (II) induced necrotic cell death. Immunohistochemical investigations showed that QA moderately induces apoptotic cell death in the hippocampus which is inhibited by both melatonin and 6-OHM. The study sought to elucidate possible mechanisms by which 6-OHM exerts its neuroprotective capabilities and the results show 6-OHM to inhibit the action of cyanide on the mitochondrial electron transport chain (ETC), one of the most common sources of free radicals. In addition, 6-OHM treatment alone, increased ETC activity above basal control levels and the results show 6-OHM to increase complex I activity in the mitochondrial ETC. Electrochemical, ultraviolet/visible spectroscopy (UV/Vis) and HPLC assessment show that an interaction exists between 6-OHM and iron (III) and 6-OHM is able to reduce iron (III) to a more biologically usable form viz. iron (II) which can be incorporated into important biomolecules such as heme. One dire consequence of this interaction is the ready provision of iron (II) to drive the Fenton reaction. However the biological and histological assessments show 6-OHM to prevent iron (II)-induced lipid peroxidation and necrotic cell death and thus, provide evidence of its antioxidant properties. The results also show 6-OHM to promote Hsp70 induction in the hippocampus. Heat shock proteins, especially Hsp 70 plays a role in cytoprotection by capturing denatured proteins and facilitating the refolding of these proteins once the stress has been relieved. 6-OHM treatment alone and together with QA was shown to increase the level of expression of Hsp70, both inducible and cognate forms of the protein. This suggests that 6-OHM helps to protect against cellular protein damage induced by any form of stress the cell may encounter. Melatonin treatment alone and in combination with QA was shown to prevent increases in the level of Hsp70 in the hippocampus, indicating that melatonin was able to reduce oxidative stress induced by QA such that Hsp70 expression was not required. The discovery of neuroprotective agents, such as melatonin and 6-OHM, is becoming important considering the rapid rise in the elderly population and the proportionate increase in neurological disorders. The findings of this study indicate the need for important information regarding the correct storage conditions and stability characteristics of melatonin dosage forms. In addition, the results indicate that 6-OHM has a definite role to play as an antioxidant. Thus further research may favour the use of these agents in the treatment of several neurodegenerative disorders.
- Full Text:
- Date Issued: 2003
- Authors: Maharaj, Deepa Sukhdev
- Date: 2003
- Subjects: Melatonin Nervous system -- Degeneration -- Treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3768 , http://hdl.handle.net/10962/d1003246
- Description: Until the beginning of this decade the antioxidant, melatonin, had been considered as little more than a tranquilizing hormone, responsible for regulating certain circadian and circannual rhythms. However, it is the discovery of melatonin as a free radical scavenger that has generated the most interest in recent years. The reduction of melatonin with age has been associated with neurodegenerative diseases such as Alzheimer’s disease (AD)and therefore, melatonin has been implicated to have an important clinical role in neuroprotection. Thus, for several years melatonin has attracted increasing attention from the general press with many advertisements touting this indoleamine to act as an aphrodisiac, rejuvenator, protector against diseases and a general wonder drug. However, melatonin formulations appear with no labelling for the correct storage conditions, dosage and side effects, as well as no control for purity and self-medicating with an unregulated product. In addition, there is much controversy surrounding the antioxidative properties of the indolemaine, 6-hydroxymelatonin (6-OHM). Therefore, the first part of this study aims to elucidate the physico-chemical and various stability characteristics of the pineal antioxidant, melatonin, while the second part is devoted to investigating the neuroprotective properties of the primary hepatic metabolite of melatonin, 6-OHM. The physical properties of melatonin were determined using various chemical techniques. This information served to both characterize and confirm the identity of melatonin raw material used in this study. In addition, this information serves to be essential as the physical properties of melatonin have not been reported in detail in literature, to date. Thereafter, using a validated high performance liquid chromatography (HPLC) method, the various physico-chemical and stability characteristics of melatonin were determined. Melatonin was shown to be extremely lipophilic, while the hygroscopic study indicates that melatonin raw material is extremely hygroscopic at temperatures above 40°C, whereas melatonin tablets are hygroscopic when left out of the original container. This study highlights the need for consumers to be aware of the proper storage of melatonin tablets to improve the stability and ensure long term integrity of the compound. Since, melatonin is most often administered orally, thus exposing it to a large variations in pH, within the gastrointestinal tract, it was decided to investigate the stability of melatonin over a range of pH’s and temperatures. The findings imply that melatonin is relatively stable at body temperature when ingested orally and that orally administered slow release preparations of melatonin should be relatively stable and therefore exhibit favourable bioavailability. However melatonin was shown to be unstable in solution. This provides important information and a challenge to the formulators of this drug substance in a liquid dosage form. An assessment of the photostability of melatonin dosage forms using International Committee on Harmonization (ICH) conditions revealed melatonin to be light sensitive and thus indicates a need for careful consideration of the packaging of these drug products. In addition a detailed assessment of the photochemistry and photoproducts formed during the UV photodegradation of melatonin is reported. Melatonin is shown to rapidly degrade in the presence of UV light, with the presence of oxygen accelerating the photodegradation. N1-acetyl-N2-formyl-5-methoxykynurenamine(AFMK) and 6-OHM were identified as the major photoproducts formed and these agents have been shown previously to retain antioxidant activity. One of the concerns of using melatonin in sunscreens is its photostability. However, it is reported in this study that the degraded solution of melatonin still possesses equipotent free radical scavenging ability as melatonin, despite the absence of melatonin in solution. In addition, melatonin is shown to reduce UV-induced oxidative stress in rat skin homogenate. Thus, these results make melatonin a likely candidate for inclusion in sunscreen preparations. Neuronal damage due to oxidative stress has been implicated in several neurodegenerative disorders. 6-OHM is not only formed as the major hepatic metabolite of melatonin, but also when melatonin reacts with toxic radicals as well as UV light. Thus the second part of the study aims to elucidate and further characterize the mechanism behind 6-OHM’s neuroprotection. The results show 6-OHM to be a more potent singlet oxygen and superoxide anion scavenger than melatonin. In addition, the results show 6-OHM to offer protection against, oxidative stress and lipid peroxidation induced by several neurotoxins in the rat brain and hippocampus. The hippocampus is an important region of the brain responsible for the formation of memory and any agent that induces stress in this area has detrimental effects and could lead to various types of dementia. Such agents include quinolinic acid (QA) and iron (II). Histological studies undertaken reveal that 6-OHM is able to protect hippocampal neurons against QA and iron (II) induced necrotic cell death. Immunohistochemical investigations showed that QA moderately induces apoptotic cell death in the hippocampus which is inhibited by both melatonin and 6-OHM. The study sought to elucidate possible mechanisms by which 6-OHM exerts its neuroprotective capabilities and the results show 6-OHM to inhibit the action of cyanide on the mitochondrial electron transport chain (ETC), one of the most common sources of free radicals. In addition, 6-OHM treatment alone, increased ETC activity above basal control levels and the results show 6-OHM to increase complex I activity in the mitochondrial ETC. Electrochemical, ultraviolet/visible spectroscopy (UV/Vis) and HPLC assessment show that an interaction exists between 6-OHM and iron (III) and 6-OHM is able to reduce iron (III) to a more biologically usable form viz. iron (II) which can be incorporated into important biomolecules such as heme. One dire consequence of this interaction is the ready provision of iron (II) to drive the Fenton reaction. However the biological and histological assessments show 6-OHM to prevent iron (II)-induced lipid peroxidation and necrotic cell death and thus, provide evidence of its antioxidant properties. The results also show 6-OHM to promote Hsp70 induction in the hippocampus. Heat shock proteins, especially Hsp 70 plays a role in cytoprotection by capturing denatured proteins and facilitating the refolding of these proteins once the stress has been relieved. 6-OHM treatment alone and together with QA was shown to increase the level of expression of Hsp70, both inducible and cognate forms of the protein. This suggests that 6-OHM helps to protect against cellular protein damage induced by any form of stress the cell may encounter. Melatonin treatment alone and in combination with QA was shown to prevent increases in the level of Hsp70 in the hippocampus, indicating that melatonin was able to reduce oxidative stress induced by QA such that Hsp70 expression was not required. The discovery of neuroprotective agents, such as melatonin and 6-OHM, is becoming important considering the rapid rise in the elderly population and the proportionate increase in neurological disorders. The findings of this study indicate the need for important information regarding the correct storage conditions and stability characteristics of melatonin dosage forms. In addition, the results indicate that 6-OHM has a definite role to play as an antioxidant. Thus further research may favour the use of these agents in the treatment of several neurodegenerative disorders.
- Full Text:
- Date Issued: 2003
Cimetidine as a free radical scavenger
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- Date Issued: 2003
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- Date Issued: 2003
Investigation of the comparative cost-effectiveness of different strategies for the management of multidrug-resistant tuberculosis
- Authors: Rockcliffe, Nicole
- Date: 2003
- Subjects: Tuberculosis , Multidrug resistance , Tuberculosis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3788 , http://hdl.handle.net/10962/d1003266 , Tuberculosis , Multidrug resistance , Tuberculosis -- Treatment
- Description: The tuberculosis epidemic is escalating in South Africa as well as globally. This escalation is exacerbated by the increasing prevalence of multidrug-resistant tuberculosis (MDRTB), which is defined by the World Health Organisation (WHO) as resistance of Mycobacteria to at least isoniazid and rifampicin. Multi-drug resistant tuberculosis is estimated to occur in 1-2% of newly diagnosed tuberculosis (TB) patients and in 4-8% of previously treated patients. MDRTB is both difficult and expensive to treat, costing up to 126 times that of drug-sensitive TB. Resource constrained countries such as South Africa often lack both the money and the infrastructure to treat this disease. The aim of this project was to determine whether the performance of a systematic review with subsequent economic modelling could influence the decision making process for policy makers. Data was gathered and an economic evaluation of MDRTB treatment was performed from the perspective of the South African Department of Health. Three treatment alternatives were identified: a protocol regimen of second line anti-tuberculosis agents, as recommended in the South African guidelines for MDRTB, an appropriate regimen designed for each patient according to the results of culture and drug susceptibility tests, and non-drug management. A decision-analysis model using DATA 3.0 by Treeage® was developed to estimate the costs of each alternative. Outcomes were measured in terms of cost alone as well as the ‘number of cases cured’ and the number of ‘years of life saved’ for patients dying, being cured or failing treatment. Drug, hospital and laboratory costs incurred using each alternative were included in the analysis. A sensitivity analysis was performed on all variables in order to identify threshold values that would change the outcome of the evaluation. Results of the decision analysis indicate that the individualised regimen was both the cheaper and more cost-effective regimen of the two active treatment options, and was estimated to cost R50 661 per case cured and R2 070 per year of life saved. The protocol regimen was estimated to cost R73 609 per case cured and R2 741 per year of life saved. The outcome of the decision analysis was sensitive to changes in some of the variables used to model the disease, particularly the daily cost of drugs, the length of time spent in hospital and the length of treatment received by those patients dying or failing treatment. This modelling exercise highlighted significant deficiencies in the quality of evidence on MDRTB management available to policy makers. Pragmatic choices based on operational and other logistic concerns may need to be reviewed when further information becomes available. A case can be made for the establishment of a national database of costing and efficacy information to guide future policy revisions of the South African MDRTB treatment programme, which is resource intensive and of only moderate efficacy. However, due to the widely disparate range of studies on which this evaluation was based, the outcome of the study may not be credible. In this case, the use of a systematic review with subsequent economic modelling could not validly influence policy-makers to change the decision that they made on the basis of drug availability.
- Full Text:
- Date Issued: 2003
- Authors: Rockcliffe, Nicole
- Date: 2003
- Subjects: Tuberculosis , Multidrug resistance , Tuberculosis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3788 , http://hdl.handle.net/10962/d1003266 , Tuberculosis , Multidrug resistance , Tuberculosis -- Treatment
- Description: The tuberculosis epidemic is escalating in South Africa as well as globally. This escalation is exacerbated by the increasing prevalence of multidrug-resistant tuberculosis (MDRTB), which is defined by the World Health Organisation (WHO) as resistance of Mycobacteria to at least isoniazid and rifampicin. Multi-drug resistant tuberculosis is estimated to occur in 1-2% of newly diagnosed tuberculosis (TB) patients and in 4-8% of previously treated patients. MDRTB is both difficult and expensive to treat, costing up to 126 times that of drug-sensitive TB. Resource constrained countries such as South Africa often lack both the money and the infrastructure to treat this disease. The aim of this project was to determine whether the performance of a systematic review with subsequent economic modelling could influence the decision making process for policy makers. Data was gathered and an economic evaluation of MDRTB treatment was performed from the perspective of the South African Department of Health. Three treatment alternatives were identified: a protocol regimen of second line anti-tuberculosis agents, as recommended in the South African guidelines for MDRTB, an appropriate regimen designed for each patient according to the results of culture and drug susceptibility tests, and non-drug management. A decision-analysis model using DATA 3.0 by Treeage® was developed to estimate the costs of each alternative. Outcomes were measured in terms of cost alone as well as the ‘number of cases cured’ and the number of ‘years of life saved’ for patients dying, being cured or failing treatment. Drug, hospital and laboratory costs incurred using each alternative were included in the analysis. A sensitivity analysis was performed on all variables in order to identify threshold values that would change the outcome of the evaluation. Results of the decision analysis indicate that the individualised regimen was both the cheaper and more cost-effective regimen of the two active treatment options, and was estimated to cost R50 661 per case cured and R2 070 per year of life saved. The protocol regimen was estimated to cost R73 609 per case cured and R2 741 per year of life saved. The outcome of the decision analysis was sensitive to changes in some of the variables used to model the disease, particularly the daily cost of drugs, the length of time spent in hospital and the length of treatment received by those patients dying or failing treatment. This modelling exercise highlighted significant deficiencies in the quality of evidence on MDRTB management available to policy makers. Pragmatic choices based on operational and other logistic concerns may need to be reviewed when further information becomes available. A case can be made for the establishment of a national database of costing and efficacy information to guide future policy revisions of the South African MDRTB treatment programme, which is resource intensive and of only moderate efficacy. However, due to the widely disparate range of studies on which this evaluation was based, the outcome of the study may not be credible. In this case, the use of a systematic review with subsequent economic modelling could not validly influence policy-makers to change the decision that they made on the basis of drug availability.
- Full Text:
- Date Issued: 2003
Pharmaceutical analysis and aspects of the quality control of St. John's Wort products
- Authors: Wild, Tracy Joy
- Date: 2003
- Subjects: Hypericum perforatum , Hypericum perforatum -- Analysis , Hypericum perforatum -- Therapeutic use , Hypericum perforatum -- Physiological effect , Flavonoids -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3804 , http://hdl.handle.net/10962/d1003282 , Hypericum perforatum , Hypericum perforatum -- Analysis , Hypericum perforatum -- Therapeutic use , Hypericum perforatum -- Physiological effect , Flavonoids -- Analysis
- Description: Most complementary medicines contain a multitude of chemical components, some of which are claimed to contribute to the biological activity of such products. Use of complementary medicines for preventative and therapeutic purposes is increasing rapidly worldwide. Unfortunately, although control of these products is essential to ensure quality, safety, and efficacy, the quality control of most herbal preparations is currently poor to non-existent, with little or no safety and efficacy data required to support the marketing and use of these products. The objective of this study was therefore to develop suitable analytical methods to qualitatively and quantitatively analyse the relevant components (rutin, isoquercitrin, hyperoside, quercitrin, quercetin, kaempferol, hypericin, pseudohypericin and hyperforin) in St John's Wort dosage forms for quality control purposes. A gradient HPLC method using a Luna 5·mC₁₈(2) 150 x 2.00mm internal diameter (i.d.) column and UV detection, was developed for the separation of six of the relevant flavonoid compounds in St John's Wort, namely rutin, isoquercitrin, hyperoside, quercitrin, quercetin and kaempferol. The development process involved a systematic investigation of gradient conditions, flow rate, and temperature. This method was subsequently applied to assay selected commercially available St John's Wort products. This system provided the necessary accuracy, precision and reproducibility and was associated with several advantages when compared to using standard bore (4.60 mm i.d.) HPLC columns. The method developed is currently the only known method that separates all six relevant flavonoids in a reasonable run time (less than 20 minutes). It is also one of the few methods that has sufficient separation between rutin, isoquercitrin and hyperoside. A qualitative method for the fingerprinting of flavonoid components was also developed, using capillary electrophoresis (CE). CE is a rapidly growing powerful analytical technique for the separation of charged compounds. Micellar electrokinetic chromatography (MEKC) is a very powerful electrophoretic technique that is capable of selectively resolving both neutral and ionic solutes in a single run. A MEKC method suitable for the separation and determination of various flavonoid constituents used as marker compounds in Hypericum perforatum was developed. Investigations into the effect of pH, ionic strength, applied voltage and capillary dimensions on separation were performed. The optimised method was then applied to qualitatively analyse various St John's Wort products on the market. This method was found to be advantageous in that it was simple, cost-effective, required minimal sample preparation and utilised very small quantities of sample. Due to the vast differences in chemical properties between the various marker and active components in St John's Wort, it was necessary to develop separate analytical methods for the flavonoids and for the other three relevant compounds (hypericin, pseudohypericin and hyperforin). An isocratic HPLC method using a Luna 5·mC₁₈(2) 150 x 2.00mm (i.d.) column and UV detection was developed for the separation of hypericin, pseudohypericin and hyperforin. The development process involved a systematic investigation of buffer molarity, mobile phase composition, pH, flow rate, and temperature. This method was subsequently applied to assay selected commercially available St John's Wort products on the South African market. This system also provided the necessary accuracy, precision and reproducibility, as well as the advantages associated with the use of a narrow bore column as opposed to the use of the more commonly used wider bore columns. This method was validated and used to quantitate these three compounds in various commercial St John's Wort products. By applying this method to liquid chromatography – tandem mass spectrometry (LC-MS-MS), qualitative analyses of the same products was performed to obtain confirmation of the quantitative HPLC results. Mass spectrometry is a powerful detection tool that is more selective and specific than many detection systems used with HPLC. Natural medicines usually constitute a multitude of constituents with much potential interference. In this regard LC-MS-MS is a powerful tool, with its ability to unequivocally identify target analytes regardless of the presence of interferences or complex matrices. ESI-MS-MS was used for the qualitative analysis of the content of the naphthodianthrones and hyperforin in the respective tablet products assayed with HPLC. LC-MS-MS analyses were performed in order to identify the constituents and to verify the specificity of the HPLC method. High inter-product and inter-batch variability was observed for all nine compounds assayed. These quantitative results were confirmed with the respective qualitative analyses. This study confirms the need for strict quality control of herbal medicinal products commercially available to consumers.
- Full Text:
- Date Issued: 2003
- Authors: Wild, Tracy Joy
- Date: 2003
- Subjects: Hypericum perforatum , Hypericum perforatum -- Analysis , Hypericum perforatum -- Therapeutic use , Hypericum perforatum -- Physiological effect , Flavonoids -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3804 , http://hdl.handle.net/10962/d1003282 , Hypericum perforatum , Hypericum perforatum -- Analysis , Hypericum perforatum -- Therapeutic use , Hypericum perforatum -- Physiological effect , Flavonoids -- Analysis
- Description: Most complementary medicines contain a multitude of chemical components, some of which are claimed to contribute to the biological activity of such products. Use of complementary medicines for preventative and therapeutic purposes is increasing rapidly worldwide. Unfortunately, although control of these products is essential to ensure quality, safety, and efficacy, the quality control of most herbal preparations is currently poor to non-existent, with little or no safety and efficacy data required to support the marketing and use of these products. The objective of this study was therefore to develop suitable analytical methods to qualitatively and quantitatively analyse the relevant components (rutin, isoquercitrin, hyperoside, quercitrin, quercetin, kaempferol, hypericin, pseudohypericin and hyperforin) in St John's Wort dosage forms for quality control purposes. A gradient HPLC method using a Luna 5·mC₁₈(2) 150 x 2.00mm internal diameter (i.d.) column and UV detection, was developed for the separation of six of the relevant flavonoid compounds in St John's Wort, namely rutin, isoquercitrin, hyperoside, quercitrin, quercetin and kaempferol. The development process involved a systematic investigation of gradient conditions, flow rate, and temperature. This method was subsequently applied to assay selected commercially available St John's Wort products. This system provided the necessary accuracy, precision and reproducibility and was associated with several advantages when compared to using standard bore (4.60 mm i.d.) HPLC columns. The method developed is currently the only known method that separates all six relevant flavonoids in a reasonable run time (less than 20 minutes). It is also one of the few methods that has sufficient separation between rutin, isoquercitrin and hyperoside. A qualitative method for the fingerprinting of flavonoid components was also developed, using capillary electrophoresis (CE). CE is a rapidly growing powerful analytical technique for the separation of charged compounds. Micellar electrokinetic chromatography (MEKC) is a very powerful electrophoretic technique that is capable of selectively resolving both neutral and ionic solutes in a single run. A MEKC method suitable for the separation and determination of various flavonoid constituents used as marker compounds in Hypericum perforatum was developed. Investigations into the effect of pH, ionic strength, applied voltage and capillary dimensions on separation were performed. The optimised method was then applied to qualitatively analyse various St John's Wort products on the market. This method was found to be advantageous in that it was simple, cost-effective, required minimal sample preparation and utilised very small quantities of sample. Due to the vast differences in chemical properties between the various marker and active components in St John's Wort, it was necessary to develop separate analytical methods for the flavonoids and for the other three relevant compounds (hypericin, pseudohypericin and hyperforin). An isocratic HPLC method using a Luna 5·mC₁₈(2) 150 x 2.00mm (i.d.) column and UV detection was developed for the separation of hypericin, pseudohypericin and hyperforin. The development process involved a systematic investigation of buffer molarity, mobile phase composition, pH, flow rate, and temperature. This method was subsequently applied to assay selected commercially available St John's Wort products on the South African market. This system also provided the necessary accuracy, precision and reproducibility, as well as the advantages associated with the use of a narrow bore column as opposed to the use of the more commonly used wider bore columns. This method was validated and used to quantitate these three compounds in various commercial St John's Wort products. By applying this method to liquid chromatography – tandem mass spectrometry (LC-MS-MS), qualitative analyses of the same products was performed to obtain confirmation of the quantitative HPLC results. Mass spectrometry is a powerful detection tool that is more selective and specific than many detection systems used with HPLC. Natural medicines usually constitute a multitude of constituents with much potential interference. In this regard LC-MS-MS is a powerful tool, with its ability to unequivocally identify target analytes regardless of the presence of interferences or complex matrices. ESI-MS-MS was used for the qualitative analysis of the content of the naphthodianthrones and hyperforin in the respective tablet products assayed with HPLC. LC-MS-MS analyses were performed in order to identify the constituents and to verify the specificity of the HPLC method. High inter-product and inter-batch variability was observed for all nine compounds assayed. These quantitative results were confirmed with the respective qualitative analyses. This study confirms the need for strict quality control of herbal medicinal products commercially available to consumers.
- Full Text:
- Date Issued: 2003
The natural product chemistry of South African Plocamium species
- Authors: Knott, Michael George
- Date: 2003
- Subjects: Marine algae -- South Africa Red algae -- South Africa Green algae -- South Africa Halimeda -- South Africa
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3820 , http://hdl.handle.net/10962/d1004920
- Description: The brine shrimp lethality assay was used as a preliminary tool to screen eighteen seaweeds collected from the South African coast. Of the seaweeds tested, the red algae Plocamium corallorhiza and Hypnea rosea, and the green alga Halimeda sp., showed the most potent activity. The chemical investigation of P. corallorhiza resulted in the isolation and structural elucidation of five previously undescribed secondary metabolites, along with three known compounds and four possible artifacts of the extraction process. Standard spectroscopic methods and comparison with known compounds were used to determine the structures of the new metabolites. The new compounds included the linear halogenated monoterpenes 4,8-dibromo-1, 1-dichloro-3,7-dimethyl-2,6-octadiene (99), 4,6-dibromo-l, 1-dichloro-3,7-dimethyl-2,7-octadiene (100), 4,8-dibromo-l, 1,7-trichloro-3,7-dimethyl-2,5-octadiene (101) and 3,4,6,7-tetrachloro-3,7-dimethyl-l-octene (102) and the cyclic monoterpene 5-bromo-5-bromomethyl-I-chlorovinyl-2,4-dichloro-methylcyclohexane (103) while the known compounds were identified as 4-bromo-5-bromomethyl-1chlorovinyl-2,5-dichloro-methylcyclohexane (35), 1,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1,5-octadiene (94) and 8-bromo-1,3,4,7-tetrachloro-3,7-dimethyl-1,5-octadiene (96). The four methoxylated compounds (104-107) were presumably formed via a standard substitution reaction between the halogenated monoterpenes 96 and 101 and MeOH, which was used as a component in the extraction solvent. With over 100 000 natural products having been reported, it has become necessary to employ an efficient dereplication strategy to quickly identify known compounds. A simple Gas Chromatography-Mass Spectrometry (GC-MS) method for the efficient physicochemical screening, identification and dereplication of Plocamium metabolites was developed. In this study the crude extracts of P. corallorhiza, P. cornutum and P. maxillosum were screened by GC-MS and the retention times and mass spectral fragmentation patterns of compounds 94, 96, 99 - 107 were used to quickly identify known and new compounds in the crude extracts of P. cornutum and P. maxillosum. This data indicated that compounds 99, 100, 103 were present in both P. corallorhiza and P.cornutum, while compound 102 was found to be present in P. corallorhiza, P. cornutum and P. maxillosum. These studies also indicated that ecotypes and chemotypes are not a significant feature of P. corallorhiza and P. cornutum. Different species of Plocamium (namely: P. corallorhiza, P. cornutum, and P. maxillosum) have very different chemical profiles, and GC may therefore have appreciable taxonomic application in the identification of the different Plocamium spp. which are endemic to South Africa.
- Full Text:
- Date Issued: 2003
- Authors: Knott, Michael George
- Date: 2003
- Subjects: Marine algae -- South Africa Red algae -- South Africa Green algae -- South Africa Halimeda -- South Africa
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3820 , http://hdl.handle.net/10962/d1004920
- Description: The brine shrimp lethality assay was used as a preliminary tool to screen eighteen seaweeds collected from the South African coast. Of the seaweeds tested, the red algae Plocamium corallorhiza and Hypnea rosea, and the green alga Halimeda sp., showed the most potent activity. The chemical investigation of P. corallorhiza resulted in the isolation and structural elucidation of five previously undescribed secondary metabolites, along with three known compounds and four possible artifacts of the extraction process. Standard spectroscopic methods and comparison with known compounds were used to determine the structures of the new metabolites. The new compounds included the linear halogenated monoterpenes 4,8-dibromo-1, 1-dichloro-3,7-dimethyl-2,6-octadiene (99), 4,6-dibromo-l, 1-dichloro-3,7-dimethyl-2,7-octadiene (100), 4,8-dibromo-l, 1,7-trichloro-3,7-dimethyl-2,5-octadiene (101) and 3,4,6,7-tetrachloro-3,7-dimethyl-l-octene (102) and the cyclic monoterpene 5-bromo-5-bromomethyl-I-chlorovinyl-2,4-dichloro-methylcyclohexane (103) while the known compounds were identified as 4-bromo-5-bromomethyl-1chlorovinyl-2,5-dichloro-methylcyclohexane (35), 1,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1,5-octadiene (94) and 8-bromo-1,3,4,7-tetrachloro-3,7-dimethyl-1,5-octadiene (96). The four methoxylated compounds (104-107) were presumably formed via a standard substitution reaction between the halogenated monoterpenes 96 and 101 and MeOH, which was used as a component in the extraction solvent. With over 100 000 natural products having been reported, it has become necessary to employ an efficient dereplication strategy to quickly identify known compounds. A simple Gas Chromatography-Mass Spectrometry (GC-MS) method for the efficient physicochemical screening, identification and dereplication of Plocamium metabolites was developed. In this study the crude extracts of P. corallorhiza, P. cornutum and P. maxillosum were screened by GC-MS and the retention times and mass spectral fragmentation patterns of compounds 94, 96, 99 - 107 were used to quickly identify known and new compounds in the crude extracts of P. cornutum and P. maxillosum. This data indicated that compounds 99, 100, 103 were present in both P. corallorhiza and P.cornutum, while compound 102 was found to be present in P. corallorhiza, P. cornutum and P. maxillosum. These studies also indicated that ecotypes and chemotypes are not a significant feature of P. corallorhiza and P. cornutum. Different species of Plocamium (namely: P. corallorhiza, P. cornutum, and P. maxillosum) have very different chemical profiles, and GC may therefore have appreciable taxonomic application in the identification of the different Plocamium spp. which are endemic to South Africa.
- Full Text:
- Date Issued: 2003