Photophysicochemical properties and surface-enhanced Raman scattering of phthalocyanine-nanoparticle conjugates
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
Physicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanine-nanoparticle conjugates
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
Substituent effects on the electrocatalytic activity of cobalt phthalocyanine in the presence of graphene quantum dots
- Centane, Sixolile Sibongiseni
- Authors: Centane, Sixolile Sibongiseni
- Date: 2019
- Subjects: Phthalocyanines , Quantum dots , Electrocatalysis , Electrochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67614 , vital:29121
- Description: The electrocatalytic activity of metallophthalocyanines derivatives is explored. Cobalt monocarboxyphenoxy phthalocyanine (1), cobalt tetracarboxyphenoxy phthalocyanine (2), cobalt tetraaminophenoxy phthalocyanine (3) and cobalt tris-(tert-butylphenoxy) monocarboxyphenoxy phthalocyanine (4) are the phthalocyanines employed in this work. The metallophthalocyanines were employed alone as well as in the presence of the carbon based graphene quantum dots. The electrocatalytic behaviour of functionalized GQDs is also explored herein. The catalytic processes studies were conducted on a glassy carbon electrode surface. Modification of the electrode was achieved by the adsorption method. The materials were adsorbed either alone, as premixed/covalently linked GQDs/Pc conjugates or sequentially. Sequentially adsorbed electrodes involved the phthalocyanines on top or beneath GQDs. Sequentially modified electrodes where the phthalocyanine had higher currents and low detection limits than when the phthalocyanine is underneath. Premixed conjugates showed better activity than the covalently formed conjugates. The nanomaterials synthesized and used in this work were characterized using transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, Raman spectroscopy, X-ray diffraction, Atomic Force Microscopy and X-ray photoelectron spectroscopy. The modified electrodes were characterized using cyclic voltammetry and scanning electrochemical spectroscopy. The electrocatalytic activity of the modified electrodes towards the oxidation of hydrazine was evaluated using cyclic voltammetry and chronoamperometry. Superior catalytic activity was observed for the conjugates compared to that of the individual conjugates.
- Full Text:
- Date Issued: 2019
- Authors: Centane, Sixolile Sibongiseni
- Date: 2019
- Subjects: Phthalocyanines , Quantum dots , Electrocatalysis , Electrochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67614 , vital:29121
- Description: The electrocatalytic activity of metallophthalocyanines derivatives is explored. Cobalt monocarboxyphenoxy phthalocyanine (1), cobalt tetracarboxyphenoxy phthalocyanine (2), cobalt tetraaminophenoxy phthalocyanine (3) and cobalt tris-(tert-butylphenoxy) monocarboxyphenoxy phthalocyanine (4) are the phthalocyanines employed in this work. The metallophthalocyanines were employed alone as well as in the presence of the carbon based graphene quantum dots. The electrocatalytic behaviour of functionalized GQDs is also explored herein. The catalytic processes studies were conducted on a glassy carbon electrode surface. Modification of the electrode was achieved by the adsorption method. The materials were adsorbed either alone, as premixed/covalently linked GQDs/Pc conjugates or sequentially. Sequentially adsorbed electrodes involved the phthalocyanines on top or beneath GQDs. Sequentially modified electrodes where the phthalocyanine had higher currents and low detection limits than when the phthalocyanine is underneath. Premixed conjugates showed better activity than the covalently formed conjugates. The nanomaterials synthesized and used in this work were characterized using transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, Raman spectroscopy, X-ray diffraction, Atomic Force Microscopy and X-ray photoelectron spectroscopy. The modified electrodes were characterized using cyclic voltammetry and scanning electrochemical spectroscopy. The electrocatalytic activity of the modified electrodes towards the oxidation of hydrazine was evaluated using cyclic voltammetry and chronoamperometry. Superior catalytic activity was observed for the conjugates compared to that of the individual conjugates.
- Full Text:
- Date Issued: 2019
Syntheses and photophysico-chemical properties of phthalocyanines in the presence of silica nanoparticles
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
Synthesis of indium phthalocyanines for photodynamic antimicrobial chemotherapy and photo-oxidation of pollutants
- Authors: Sindelo, Azole
- Date: 2019
- Subjects: Phthalocyanines , Azo dyes , Indium compounds , Photochemotherapy , Nanoparticles , Photodegradation , Pollutants , Water -- Purification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67581 , vital:29116
- Description: Indium (III) octacarboxyl phthalocyanine (ClInOCPc) alone and when conjugated to magnetic nanoparticles (MNP-ClInOCPc), 2(3),9(10),16(17),23(24)-octapyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOPyPc) and its quaternized derivative 2(3),9(10),16(17),23(24)-octamethylpyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOMePyPc) were synthesized. All Pcs were tested for both photodynamic antimicrobial chemotherapy (PACT) of an unknown water sample and photo-degradation of methyl red (MR). The singlet quantum yield (ΦΔ) for the ClInOCPc and MNP-ClInOCPc in PAN polymer fibers were 0.36 and 0.20 respectively using ADMA as a quencher in water. The photo-inactivation of bacteria in a water sample with unknown microbes was tested, with the MNP-ClInOCPc inactivating 90.6 % of the microbes and the ClInOCPc with 84.8 %. When embedded to the polymer, there was 48% bacterial clearance for ClInOCPc and 64% clearance for the MNP-ClInOCPc. The rate of degradation of MR increased with decrease of the MR concentration, with the MNP-ClInOCPc having the fastest rate. For ClInOPyPc and ClInOMePyPc, the singlet quantum yields were 0.46 and 0.33 in dimethylformamide (DMF), respectively. The PACT activity of ClInOMePyPc (containing 8 positive charges) was compared to those of 9(10),16(17),23(24)-tri-N-methyl-4-pyridylsulfanyl-2(3)-(4-aminophenoxy) phthalocyaninato chloro indium (III) triiodide (1) (containing 3 positive charges) and 2-[4-(N-methylpyridyloxy) phthalocyaninato] chloroindium (III) iodide (2) (containing 4 positive charges). When comparing ClInOMePyPc, 1 and 2, the largest log reduction for E. coli were obtained for complex 2 containing four positive charges hence showing it is not always the charge that determines the PACT activity, but the bridging atom in the phthalocyanine plays a role.
- Full Text:
- Date Issued: 2019
- Authors: Sindelo, Azole
- Date: 2019
- Subjects: Phthalocyanines , Azo dyes , Indium compounds , Photochemotherapy , Nanoparticles , Photodegradation , Pollutants , Water -- Purification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67581 , vital:29116
- Description: Indium (III) octacarboxyl phthalocyanine (ClInOCPc) alone and when conjugated to magnetic nanoparticles (MNP-ClInOCPc), 2(3),9(10),16(17),23(24)-octapyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOPyPc) and its quaternized derivative 2(3),9(10),16(17),23(24)-octamethylpyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOMePyPc) were synthesized. All Pcs were tested for both photodynamic antimicrobial chemotherapy (PACT) of an unknown water sample and photo-degradation of methyl red (MR). The singlet quantum yield (ΦΔ) for the ClInOCPc and MNP-ClInOCPc in PAN polymer fibers were 0.36 and 0.20 respectively using ADMA as a quencher in water. The photo-inactivation of bacteria in a water sample with unknown microbes was tested, with the MNP-ClInOCPc inactivating 90.6 % of the microbes and the ClInOCPc with 84.8 %. When embedded to the polymer, there was 48% bacterial clearance for ClInOCPc and 64% clearance for the MNP-ClInOCPc. The rate of degradation of MR increased with decrease of the MR concentration, with the MNP-ClInOCPc having the fastest rate. For ClInOPyPc and ClInOMePyPc, the singlet quantum yields were 0.46 and 0.33 in dimethylformamide (DMF), respectively. The PACT activity of ClInOMePyPc (containing 8 positive charges) was compared to those of 9(10),16(17),23(24)-tri-N-methyl-4-pyridylsulfanyl-2(3)-(4-aminophenoxy) phthalocyaninato chloro indium (III) triiodide (1) (containing 3 positive charges) and 2-[4-(N-methylpyridyloxy) phthalocyaninato] chloroindium (III) iodide (2) (containing 4 positive charges). When comparing ClInOMePyPc, 1 and 2, the largest log reduction for E. coli were obtained for complex 2 containing four positive charges hence showing it is not always the charge that determines the PACT activity, but the bridging atom in the phthalocyanine plays a role.
- Full Text:
- Date Issued: 2019
Synthesis of pH responsive carriers for pulmonary drug delivery of anti-tuberculosis therapeutics: mesoporous silica nanoparticles and gelatin nanoparticles
- Authors: Ngoepe, Mpho Phehello
- Date: 2019
- Subjects: Drug delivery systems , Pulmonary pharmacology , Nanosilicon , Nanomedicine , Nanoparticles , Mesoporous materials , Silica , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76519 , vital:30590
- Description: Pulmonary drug delivery has historically been used as a route for delivery of therapeutics for respiratory disease management. However, while there are many advantages, there are also some serious limitations, arising mostly from the physical aspects of the inhaler devices. This is more profound when the devices are the driving force for controlling particle size generation, which results in non-uniform particles that end up being swallowed/wasted/expelled. One promising solution to overcome this limitation is to pre-formulate nano/microscale particles with a high degree of manufacturing control. Nanomedicine has advanced such that there are already several nanoparticle formulations commercially available. In the case of tuberculosis treatment, there is an opportunity not only to examine the use of nanoparticles for inhalation therapy, but to take advantage of the fact that the physiochemical environment of diseased tissue is significantly different to health lung tissue (lower pH and increased enzyme concentrations). We formulated two series of nanoparticles, whose design included moieties that could respond to pH and enzymes. To address variability, a Box-Behnken statistical approach was followed to construct mesoporous silica nanoparticles. These “hard nanoparticles” can entrap both lipophilic and hydrophilic drugs and were coated with a pH-sensitive hydrazone linker. It was observed that pH, calcination temperature and ratio of water to silica source played the greatest role, not only in controlling the physicochemical properties of the nanoparticles but also the drug release rate. A second series of nanoparticles were synthesized based on gelatin. This was done partly to add support the comparison of hard (inorganic silica) versus soft, organic particles, but also to enable enzymatic degradation and drug release. Again, diseased lung tissue expresses increased concentrations of gelatinase enzymes that could be used to stimulate drug release at the site of the disease. In addition, it was observed that the non-ionic surfactant C12E10 could interact with the protein via hydrophobic interactions thus affecting the gelatin folding. The folding states affected crosslinking with the pH responsive linker, which in turn affected the rate of drug release. To support the synthetic work, we sought to develop a unique 3D lung model directly from MRI data of tuberculosis infected lungs. This would not only permit the evaluation of our nanoparticles but could be used as a proxy for in-vivo studies in future to predict lung deposition in diseased lung. Thus, this study shows that it is possible to synthesize pH and enzyme sensitive nanoparticles for pulmonary drug delivery in the treatment and management of pulmonary tuberculosis. These particles could be loaded with either hydrophobic or hydrophilic drugs and their distribution in the airway modelled using an in-silico 3D model based on real data. Further development and verification of these results should improve treatment for pulmonary diseases and conditions such as tuberculosis. This is especially urgent in the face of multi-drug resistance and poor side effects profiles for current treatment.
- Full Text:
- Date Issued: 2019
- Authors: Ngoepe, Mpho Phehello
- Date: 2019
- Subjects: Drug delivery systems , Pulmonary pharmacology , Nanosilicon , Nanomedicine , Nanoparticles , Mesoporous materials , Silica , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76519 , vital:30590
- Description: Pulmonary drug delivery has historically been used as a route for delivery of therapeutics for respiratory disease management. However, while there are many advantages, there are also some serious limitations, arising mostly from the physical aspects of the inhaler devices. This is more profound when the devices are the driving force for controlling particle size generation, which results in non-uniform particles that end up being swallowed/wasted/expelled. One promising solution to overcome this limitation is to pre-formulate nano/microscale particles with a high degree of manufacturing control. Nanomedicine has advanced such that there are already several nanoparticle formulations commercially available. In the case of tuberculosis treatment, there is an opportunity not only to examine the use of nanoparticles for inhalation therapy, but to take advantage of the fact that the physiochemical environment of diseased tissue is significantly different to health lung tissue (lower pH and increased enzyme concentrations). We formulated two series of nanoparticles, whose design included moieties that could respond to pH and enzymes. To address variability, a Box-Behnken statistical approach was followed to construct mesoporous silica nanoparticles. These “hard nanoparticles” can entrap both lipophilic and hydrophilic drugs and were coated with a pH-sensitive hydrazone linker. It was observed that pH, calcination temperature and ratio of water to silica source played the greatest role, not only in controlling the physicochemical properties of the nanoparticles but also the drug release rate. A second series of nanoparticles were synthesized based on gelatin. This was done partly to add support the comparison of hard (inorganic silica) versus soft, organic particles, but also to enable enzymatic degradation and drug release. Again, diseased lung tissue expresses increased concentrations of gelatinase enzymes that could be used to stimulate drug release at the site of the disease. In addition, it was observed that the non-ionic surfactant C12E10 could interact with the protein via hydrophobic interactions thus affecting the gelatin folding. The folding states affected crosslinking with the pH responsive linker, which in turn affected the rate of drug release. To support the synthetic work, we sought to develop a unique 3D lung model directly from MRI data of tuberculosis infected lungs. This would not only permit the evaluation of our nanoparticles but could be used as a proxy for in-vivo studies in future to predict lung deposition in diseased lung. Thus, this study shows that it is possible to synthesize pH and enzyme sensitive nanoparticles for pulmonary drug delivery in the treatment and management of pulmonary tuberculosis. These particles could be loaded with either hydrophobic or hydrophilic drugs and their distribution in the airway modelled using an in-silico 3D model based on real data. Further development and verification of these results should improve treatment for pulmonary diseases and conditions such as tuberculosis. This is especially urgent in the face of multi-drug resistance and poor side effects profiles for current treatment.
- Full Text:
- Date Issued: 2019
Synthesis, characterisation and biological evaluation of novel anti-infective compounds bearing ferrocene, arylpyrrole, thiazolidinedione, quinoline and triazole moieties
- Authors: Oderinlo, Ogunyemi Olajide
- Date: 2019
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/114714 , vital:34016 , 10.21504/10962/114714
- Description: Expected release date-April 2022
- Full Text: false
- Date Issued: 2019
- Authors: Oderinlo, Ogunyemi Olajide
- Date: 2019
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/114714 , vital:34016 , 10.21504/10962/114714
- Description: Expected release date-April 2022
- Full Text: false
- Date Issued: 2019
Synthesis, characterisation and spectroscopic studies of diazine-N-oxide complexes of iron(II) towards the development of sensors
- Authors: Mpiti, Unako Bongani
- Date: 2019
- Subjects: Diazines , Ligands , Iron
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94753 , vital:31075
- Description: The characteristic magnetic and spectroscopic features associated with the red monomeric or dimeric, and polymeric pyrazine-N-oxide (PyzNO) iron(II) perchlorate complexes; Fen(μ1,1-pyzNO)2n-2(pyzNO)3n+2(ClO4)2n (n = {1, 2}*, and the novel compound {Fe(μ-pyzNO-κN,κO)n-1(pyzNO-κN)2(pyzNO-κO)2}n(ClO4)2n†, respectively, were investigated. These properties are altered substantially when the complexes are hydrated; for instance, by atmospheric exposure. The resulting species; Fe(pyzNO)5(H2O)3(ClO4)2* and [Fe(pyzNO-κN)4(H2O)2](ClO4)2.2H2O†, which have different hues of a bright yellow colour, were found to exhibit strong paramagnetism, in contrast to their anhydrous precursors, which are ‘EPR silent’. A low spin → high spin crossover (LS→HS, SCO) transition was therefore proposed to occur as the complexes become hydrated by atmospheric moisture. The red→yellow colour change is reversible, and dehydration of the yellow species by heating regenerates the red variant, a feature which lends itself to the potential applicability of the system as a sensor. Further emphasis on this potential derives from the fact that the hydration/dehydration process, and its accompanying physical changes, appears reversible even after many such treatments. It became of interest, then, to determine if these changes were limited to water-exposed samples, or if they occurred under more diverse solvent atmospheres. The reversibility of such exposure on the structure of the novel polynuclear complex was therefore investigated. In general, it was found that there occurred a strong solvent-complex association for the more polar solvents. Red→yellow, LS→HS events were seen when the complex was exposed to the vapours of p-dioxane, acetaldehyde and formaldehyde, and to a lesser extent, to that of methanol. In each case, significant structural changes were seen, as evidenced be comparative XRPD and thermo-analytical studies. Some of these changes have however been ascribed to the effects of partial dissolution upon extended exposure of the complex to the associated media. Exposure to less polar solvent atmospheres, such as those of cyclohexane, toluene, diethyl ether, etc., showed some signs of mild solvent surface adhesion, but were unaccompanied by discernible magnetic and colour changes. Another novel complex was produced during attempts to synthesize the PyzNO complexes from a mixture of a 2,2’-dimethoxypropane (DMP) and ethanol (1:1, v/v), rather than the methanol/DMP mixture which had been alternately used. The formula of the resulting complex is Fe(pyzNO)6(ClO4)2.3EtOH*. This EPR inactive product was orange in colour, and transformed into a bright yellow, strongly paramagnetic species upon atmospheric exposure. Further solvent studies showed that this species interacted significantly with all solvents tested, but generally more strongly with increasing solvent polarity. Orange→yellow colour changes occurred in environments saturated with p-dioxane, acetaldehyde and formaldehyde vapours. The DMSO-exposed sample transformed to dark red, due to suspected PyzNO substitution by the solvent. The red→yellow and orange→yellow colour changes were ascribed to the formal substitution of O-coordinated PyzNO (μ-PyzNO in the polymeric complex) by the incoming solvent. The resulting structural and geometric changes stimulated a redistribution of d electrons among the new constituent molecular orbitals of altered energy and symmetry. Therefore, although the colour changes were not conventionally solvatochromic - in that the original structure was lost on exposure – data suggested that it was the coordination of species of higher donor strength that produced the observed bathochromic shifts. A novel 4,4’-bipyridine-N-oxide Fe(II) perchlorate complex, Fe2(bipyNO)5(ClO4)4.6MeOH†, was also produced, primarily for physicochemical comparison with the PyzNO complexes. No colour or magnetic changes were seen on atmospheric exposure. The original complex was observed to be inherently paramagnetic, and no SCO events occurred upon solvent exposure. Despite this, thermal analyses showed that the complex did exhibit the strong uptake of polar solvents in general, but particularly with acetaldehyde. Significant structural changes upon exposure were limited to surface phenomena, with the exception of the acetaldehyde-exposed sample.
- Full Text:
- Date Issued: 2019
- Authors: Mpiti, Unako Bongani
- Date: 2019
- Subjects: Diazines , Ligands , Iron
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94753 , vital:31075
- Description: The characteristic magnetic and spectroscopic features associated with the red monomeric or dimeric, and polymeric pyrazine-N-oxide (PyzNO) iron(II) perchlorate complexes; Fen(μ1,1-pyzNO)2n-2(pyzNO)3n+2(ClO4)2n (n = {1, 2}*, and the novel compound {Fe(μ-pyzNO-κN,κO)n-1(pyzNO-κN)2(pyzNO-κO)2}n(ClO4)2n†, respectively, were investigated. These properties are altered substantially when the complexes are hydrated; for instance, by atmospheric exposure. The resulting species; Fe(pyzNO)5(H2O)3(ClO4)2* and [Fe(pyzNO-κN)4(H2O)2](ClO4)2.2H2O†, which have different hues of a bright yellow colour, were found to exhibit strong paramagnetism, in contrast to their anhydrous precursors, which are ‘EPR silent’. A low spin → high spin crossover (LS→HS, SCO) transition was therefore proposed to occur as the complexes become hydrated by atmospheric moisture. The red→yellow colour change is reversible, and dehydration of the yellow species by heating regenerates the red variant, a feature which lends itself to the potential applicability of the system as a sensor. Further emphasis on this potential derives from the fact that the hydration/dehydration process, and its accompanying physical changes, appears reversible even after many such treatments. It became of interest, then, to determine if these changes were limited to water-exposed samples, or if they occurred under more diverse solvent atmospheres. The reversibility of such exposure on the structure of the novel polynuclear complex was therefore investigated. In general, it was found that there occurred a strong solvent-complex association for the more polar solvents. Red→yellow, LS→HS events were seen when the complex was exposed to the vapours of p-dioxane, acetaldehyde and formaldehyde, and to a lesser extent, to that of methanol. In each case, significant structural changes were seen, as evidenced be comparative XRPD and thermo-analytical studies. Some of these changes have however been ascribed to the effects of partial dissolution upon extended exposure of the complex to the associated media. Exposure to less polar solvent atmospheres, such as those of cyclohexane, toluene, diethyl ether, etc., showed some signs of mild solvent surface adhesion, but were unaccompanied by discernible magnetic and colour changes. Another novel complex was produced during attempts to synthesize the PyzNO complexes from a mixture of a 2,2’-dimethoxypropane (DMP) and ethanol (1:1, v/v), rather than the methanol/DMP mixture which had been alternately used. The formula of the resulting complex is Fe(pyzNO)6(ClO4)2.3EtOH*. This EPR inactive product was orange in colour, and transformed into a bright yellow, strongly paramagnetic species upon atmospheric exposure. Further solvent studies showed that this species interacted significantly with all solvents tested, but generally more strongly with increasing solvent polarity. Orange→yellow colour changes occurred in environments saturated with p-dioxane, acetaldehyde and formaldehyde vapours. The DMSO-exposed sample transformed to dark red, due to suspected PyzNO substitution by the solvent. The red→yellow and orange→yellow colour changes were ascribed to the formal substitution of O-coordinated PyzNO (μ-PyzNO in the polymeric complex) by the incoming solvent. The resulting structural and geometric changes stimulated a redistribution of d electrons among the new constituent molecular orbitals of altered energy and symmetry. Therefore, although the colour changes were not conventionally solvatochromic - in that the original structure was lost on exposure – data suggested that it was the coordination of species of higher donor strength that produced the observed bathochromic shifts. A novel 4,4’-bipyridine-N-oxide Fe(II) perchlorate complex, Fe2(bipyNO)5(ClO4)4.6MeOH†, was also produced, primarily for physicochemical comparison with the PyzNO complexes. No colour or magnetic changes were seen on atmospheric exposure. The original complex was observed to be inherently paramagnetic, and no SCO events occurred upon solvent exposure. Despite this, thermal analyses showed that the complex did exhibit the strong uptake of polar solvents in general, but particularly with acetaldehyde. Significant structural changes upon exposure were limited to surface phenomena, with the exception of the acetaldehyde-exposed sample.
- Full Text:
- Date Issued: 2019
The preparation of BODIPY and porphyrin dyes and their cyclodextrin inclusion complexes and Pluronic® F-127 encapsulation micelles for use in PDT and PACT
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
BODIPY dyes for singlet oxygen and optical limiting applications
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
- Date Issued: 2018
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
- Date Issued: 2018
Characterisation of surfaces modified with phthalocyanines through click chemistry for applications in electrochemical sensing
- O'Donoghue, Charles St John Nqwabuko
- Authors: O'Donoghue, Charles St John Nqwabuko
- Date: 2018
- Subjects: Electrodes, Carbon , Phthalocyanines , X-ray photoelectron spectroscopy , Electrochemistry , Electrochemical sensors , Hydrazine , Click chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58046 , vital:27038
- Description: One form of surface modification was primarily investigated in this work on glassy carbon electrodes. The form of modification is comprised of a series of steps in which electrografting is first applied to the glassy carbon surface, which is then followed up with click chemistry to ultimately immobilise a phthalocyanine onto the surface. The modified glassy carbon electrodes and surfaces were characterised with a combination of scanning electrochemical microscopy, X-ray photoelectron spectroscopy and various electrochemical methods. In this work, three alkyne substituted phthalocyanines were used. Two novel phthalocyanines, with nickel and cobalt metal centres, were studied alongside a manganese phthalocyanine reported in literature. Each of the three phthalocyanines was modified at the peripheral position with a 1-hexyne group, via a glycosidic bond, yielding the terminal alkyne groups that were used for subsequent click reactions. In situ diazotisation was used to graft 4-azidoaniline groups to the surface of the glassy carbon electrode. The azide bearing 4- azidoaniline groups were thus used to anchor the tetra substituted phthalocyanines to the surface of the electrodes. This method yielded successful modification of the electrodes and lead to their application in sensing studies. The modified electrodes were primarily used to catalyse the common agricultural oxidising agent hydrazine.
- Full Text:
- Date Issued: 2018
- Authors: O'Donoghue, Charles St John Nqwabuko
- Date: 2018
- Subjects: Electrodes, Carbon , Phthalocyanines , X-ray photoelectron spectroscopy , Electrochemistry , Electrochemical sensors , Hydrazine , Click chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58046 , vital:27038
- Description: One form of surface modification was primarily investigated in this work on glassy carbon electrodes. The form of modification is comprised of a series of steps in which electrografting is first applied to the glassy carbon surface, which is then followed up with click chemistry to ultimately immobilise a phthalocyanine onto the surface. The modified glassy carbon electrodes and surfaces were characterised with a combination of scanning electrochemical microscopy, X-ray photoelectron spectroscopy and various electrochemical methods. In this work, three alkyne substituted phthalocyanines were used. Two novel phthalocyanines, with nickel and cobalt metal centres, were studied alongside a manganese phthalocyanine reported in literature. Each of the three phthalocyanines was modified at the peripheral position with a 1-hexyne group, via a glycosidic bond, yielding the terminal alkyne groups that were used for subsequent click reactions. In situ diazotisation was used to graft 4-azidoaniline groups to the surface of the glassy carbon electrode. The azide bearing 4- azidoaniline groups were thus used to anchor the tetra substituted phthalocyanines to the surface of the electrodes. This method yielded successful modification of the electrodes and lead to their application in sensing studies. The modified electrodes were primarily used to catalyse the common agricultural oxidising agent hydrazine.
- Full Text:
- Date Issued: 2018
Development of a computational chemistry scheme for testing the utility of synthetic bacteriochlorin in dye-sensitized solar cells
- Authors: Kota, Ntsika
- Date: 2018
- Subjects: Dye-sensitized solar cells , Computational chemistry , Density functionals , Electronic excitation , Molecular orbitals , Oscillator strengths , Bacteriochlorin
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62327 , vital:28155
- Description: A computational chemistry scheme, based on density functional theory, was developed for in silico testing of a few bacteriochlorin properties relevant to dye-sensitized solar cells. These properties included electronic excitation wavelengths, molecular orbital energy levels, and oscillator strengths among others. Comparisons were made among four species, using computational proxies for electron injection quantum yield and photo-induced current production. The proxy measures for current production (frontier orbital energy level and short circuit current) made consistent, though qualitative, predictions about the ranking of the four dyes. The proxy measures for electron injection quantum yield (change in planar dipole moment and density of states) made less categorical predictions about the ranking. Overall, the scheme singled out one dye as the worst, but made no conclusive predictions about the relative ranking of the other three. There was insufficient data for comparison of the ranking predictions with experiment.
- Full Text:
- Date Issued: 2018
- Authors: Kota, Ntsika
- Date: 2018
- Subjects: Dye-sensitized solar cells , Computational chemistry , Density functionals , Electronic excitation , Molecular orbitals , Oscillator strengths , Bacteriochlorin
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62327 , vital:28155
- Description: A computational chemistry scheme, based on density functional theory, was developed for in silico testing of a few bacteriochlorin properties relevant to dye-sensitized solar cells. These properties included electronic excitation wavelengths, molecular orbital energy levels, and oscillator strengths among others. Comparisons were made among four species, using computational proxies for electron injection quantum yield and photo-induced current production. The proxy measures for current production (frontier orbital energy level and short circuit current) made consistent, though qualitative, predictions about the ranking of the four dyes. The proxy measures for electron injection quantum yield (change in planar dipole moment and density of states) made less categorical predictions about the ranking. Overall, the scheme singled out one dye as the worst, but made no conclusive predictions about the relative ranking of the other three. There was insufficient data for comparison of the ranking predictions with experiment.
- Full Text:
- Date Issued: 2018
Donor-acceptor effects on the optical limiting properties of BODIPY dyes
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
Exploring the potential of imines as antiprotozoan agents with focus on t. Brucei and p. Falciparum
- Authors: Oluwafemi, Kola Augustus
- Date: 2018
- Subjects: Protozoa , Parasites , Imines , Nuclear magnetic resonance , HeLa cells , Plasmodium falciparum , Trypanosoma brucei , Isomerism
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/62235 , vital:28145 , DOI 10.21504/10962/62235
- Description: This work focuses on the design, synthesis and evaluation of imine-containing heterocyclic and acyclic compounds with special focus on their bioactivity against parasitic protozoans (P. falciparum and T. brucei) - given the context of drug resistance in the treatment of malaria and Human African sleeping sickness and the fact that several bioactive organic compounds have been reported to possess the imino group. Starting from 2-aminopyridine, novel #-alkylated-5-bromo-7-azabenzimidazoles and substituted 5-bromo-1-(carbamoylmethy)-7-azabenzimidazole derivatives were prepared, and their bioactivity against parasitic protozoans was assessed. NMR spectra of the substituted 5- bromo-1-(carbamoylmethy)-7-azabenzimidazole derivatives exhibited rotational isomerism, and a dynamic NMR study was used in the estimation of the rate constants and the free- energies of activation for rotation. The free-energy differences between the two rotamers were determined and the more stable conformations were predicted. Novel 2-phenyl-7-azabenzimidazoles were also synthesised from 2-aminopyridine. A convenient method for the regioselective formylation of 2,3-diaminopyridines into 2-amino- 7-(benzylimino)pyridine analogues of 2-phenyl-7-azabenzimidazole was developed, and some of the resulting imino derivatives were hydrogenated to verify the importance of the imino moiety for bioactivity. The 2-phenyl-7-azabenzimidazoles and the 2-amino-7- (benzylimino)pyridine analogues were screened for their anti-protozoal activity and their cytotoxicity level was determined against the HeLa cell line. In order to validate the importance of the pyridine moiety, novel #-(phenyl)-2- hydroxybenzylimines, #-(benzyl)-2-hydroxybenzylimines and (±)-trans-1,2-bis[2- hydroxybenzylimino]cyclohexanes were also synthesized and screened for activity against the parasitic protozoans and for cytotoxicity against the HeLa cell line. The biological assay results indicated that these compounds are not significantly cytotoxic and a good number of them show potential as lead compounds for the development of new malaria and trypanosomiasis drugs. , Thesis (PhD) -- Faculty of Science, Chemistry, 2018
- Full Text:
- Date Issued: 2018
- Authors: Oluwafemi, Kola Augustus
- Date: 2018
- Subjects: Protozoa , Parasites , Imines , Nuclear magnetic resonance , HeLa cells , Plasmodium falciparum , Trypanosoma brucei , Isomerism
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/62235 , vital:28145 , DOI 10.21504/10962/62235
- Description: This work focuses on the design, synthesis and evaluation of imine-containing heterocyclic and acyclic compounds with special focus on their bioactivity against parasitic protozoans (P. falciparum and T. brucei) - given the context of drug resistance in the treatment of malaria and Human African sleeping sickness and the fact that several bioactive organic compounds have been reported to possess the imino group. Starting from 2-aminopyridine, novel #-alkylated-5-bromo-7-azabenzimidazoles and substituted 5-bromo-1-(carbamoylmethy)-7-azabenzimidazole derivatives were prepared, and their bioactivity against parasitic protozoans was assessed. NMR spectra of the substituted 5- bromo-1-(carbamoylmethy)-7-azabenzimidazole derivatives exhibited rotational isomerism, and a dynamic NMR study was used in the estimation of the rate constants and the free- energies of activation for rotation. The free-energy differences between the two rotamers were determined and the more stable conformations were predicted. Novel 2-phenyl-7-azabenzimidazoles were also synthesised from 2-aminopyridine. A convenient method for the regioselective formylation of 2,3-diaminopyridines into 2-amino- 7-(benzylimino)pyridine analogues of 2-phenyl-7-azabenzimidazole was developed, and some of the resulting imino derivatives were hydrogenated to verify the importance of the imino moiety for bioactivity. The 2-phenyl-7-azabenzimidazoles and the 2-amino-7- (benzylimino)pyridine analogues were screened for their anti-protozoal activity and their cytotoxicity level was determined against the HeLa cell line. In order to validate the importance of the pyridine moiety, novel #-(phenyl)-2- hydroxybenzylimines, #-(benzyl)-2-hydroxybenzylimines and (±)-trans-1,2-bis[2- hydroxybenzylimino]cyclohexanes were also synthesized and screened for activity against the parasitic protozoans and for cytotoxicity against the HeLa cell line. The biological assay results indicated that these compounds are not significantly cytotoxic and a good number of them show potential as lead compounds for the development of new malaria and trypanosomiasis drugs. , Thesis (PhD) -- Faculty of Science, Chemistry, 2018
- Full Text:
- Date Issued: 2018
Graphene quantum dots and their metallophthalocyanines nanoconjugates as novel photoluminescent nanosensors
- Authors: Achadu, Ojodomo John
- Date: 2018
- Subjects: Quantum dots , Graphene , Phthalocyanines , Nanoconjugates , Novel photoluminescent nanosensors , Metallophthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60719 , vital:27821
- Description: The fabrication and application of graphene quantum dots (GQDs)-based photoluminescent probes for the detection of analytes is presented. GQDs were functionalized with complexes such as metallophthalocyanines (MPcs), metal nanoparticles (Au@Ag NPs), 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl (TEMPO), maleimide and thymine for the sensing of target analytes such as ascorbic acid (AA), biothiols (cysteine, homocysteine and glutathione) and mercury ion (Hg²+). The design strategy and approach was based on the quenching of the fluorescence of the GQDs upon functionalization with the above-mentioned complexes, which could be restored in the presence of the target analytes (due to their specific interaction affinity with the complexes). For the detection of AA, GQDs were covalently and/or non-covalently conjugated to TEMPO-bearing complexes to form GQDs-4A-TEMPO and GQDs-TEMPO-MPc systems with nanomolar limits of detection. For the detection of biothiols, Au@Ag NPs and maleimide-bearing complexes (MPc), which have specific affinity to interact with biothiols, were deployed. Hg²+ detection involved the use of GQDs and/or MPcs with thiol and thymine groups, respectively. In addition, a smart sensing platform was designed for the dual detection of biothiols and Hg²+ using supramolecular hybrid of polyethyleneimine functionalized-GQDs and MPc-Au@Ag conjugate. The probe could detect, in a sequential manner, Hg²+ and biothiols with high sensitivity. Results obtained from the LODs of the probes showed that GQDs sensing performances could be enhanced in the presence of MPcs. The probes designed in this work were successfully deployed in the assays of the target analytes in real samples and the recoveries obtained confirmed the analytical applicability of the probes.
- Full Text:
- Date Issued: 2018
- Authors: Achadu, Ojodomo John
- Date: 2018
- Subjects: Quantum dots , Graphene , Phthalocyanines , Nanoconjugates , Novel photoluminescent nanosensors , Metallophthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60719 , vital:27821
- Description: The fabrication and application of graphene quantum dots (GQDs)-based photoluminescent probes for the detection of analytes is presented. GQDs were functionalized with complexes such as metallophthalocyanines (MPcs), metal nanoparticles (Au@Ag NPs), 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl (TEMPO), maleimide and thymine for the sensing of target analytes such as ascorbic acid (AA), biothiols (cysteine, homocysteine and glutathione) and mercury ion (Hg²+). The design strategy and approach was based on the quenching of the fluorescence of the GQDs upon functionalization with the above-mentioned complexes, which could be restored in the presence of the target analytes (due to their specific interaction affinity with the complexes). For the detection of AA, GQDs were covalently and/or non-covalently conjugated to TEMPO-bearing complexes to form GQDs-4A-TEMPO and GQDs-TEMPO-MPc systems with nanomolar limits of detection. For the detection of biothiols, Au@Ag NPs and maleimide-bearing complexes (MPc), which have specific affinity to interact with biothiols, were deployed. Hg²+ detection involved the use of GQDs and/or MPcs with thiol and thymine groups, respectively. In addition, a smart sensing platform was designed for the dual detection of biothiols and Hg²+ using supramolecular hybrid of polyethyleneimine functionalized-GQDs and MPc-Au@Ag conjugate. The probe could detect, in a sequential manner, Hg²+ and biothiols with high sensitivity. Results obtained from the LODs of the probes showed that GQDs sensing performances could be enhanced in the presence of MPcs. The probes designed in this work were successfully deployed in the assays of the target analytes in real samples and the recoveries obtained confirmed the analytical applicability of the probes.
- Full Text:
- Date Issued: 2018
Guest inclusion behaviour of zirconium(IV)- based polycarboxylate complexes: a study of metal-organic frameworks
- Hulushe, Siyabonga Theophillus
- Authors: Hulushe, Siyabonga Theophillus
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63710 , vital:28474
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
- Authors: Hulushe, Siyabonga Theophillus
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63710 , vital:28474
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
Mannich base metal complexes and their thiocyanate analogues as catalysts in the oxidation of Catechol
- Authors: Ayeni, Ayowole Olaolu
- Date: 2018
- Subjects: Mannich bases , Catechol , Catechol -- Oxidation , Thiocyanates , Catalysts
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62339 , vital:28156
- Description: The study focused on the design of new Cu(II) and Fe(III) complexes, with or without thiocyanate (NCS-), as possible candidates of catechol oxidation using 3,5-di-tert-butyl catechol (3,5-DTBC) as substrate. Two classes of Mannich bases were studied depending on the active methylene group from which they were formed, being either p-cresol or acetaminophen. The ligands were characterised by 1H and 13C NMR spectroscopy. Crystal structures of three of the ligands are newly reported, along with detailed discussion of polymorphism observed in one of the ligands, and the nature of the hydrogen within the ligands in the solid state as well as in solution. The Mannich bases behaved as bidentate (NO), tridentate (NNO) and tetradentate (NNOO) ligands on coordination to Cu(II) and Fe(III) ions in which the hydroxyl group may be protonated or deprotonated. Coordination was determined by IR spectroscopy, investigating shifts in vOH, vC-O and in vCNC of the Mannich bases. The vCNC stretching frequencies v1 and v2 of asymmetrical piperazine Mannich bases were observed to shift upward in few cases upon complexation and this is attributed to (chair-boat) conformational change. The mode of coordination of the thiocyanate was determined by IR spectroscopy. Of the forty metal complexes investigated, six groups of metal complexes were identified as follows: (i) Ma(Ln)aClb-cH2O; (ii) Ma(HLn)a(NCS)aClb; (iii) Ma(Ln)a(NCS)aClb; (iv) Ma(HLn)aClb-cH2O; (v) Ma(Ln)a(NCS)a-cH2O; (vi) Ma(HLn)a(NCS)a-cH2O where a = 1 - 2 ; b = 1 - 4, c = 1 - 8. Molar conductivity values of 4.38 - 161.77 Q-1.cm2.mol-1 for the Cu(II) and Fe(III) complexes in DMSO showed that they range from non-electrolytes to 1:1 and 1:2 electrolytes. Electronic spectra for the ligands and the complexes were conducted in DMF and DMSO. The ligands are characterised by and n→n* and n→n* transitions. Intraligand charge transfer transitions peculiar to the nitro group were observed at about 430 nm for the nitro containing ligands. On coordination, these bands overshadowed the d-d transitions particularly for the nitro-Mannich bases. On complexation, ligand to metal charge transfer transitions associated with the hydroxyl were observed between 320 - 420 nm. Charge transfer transitions associated with the thiocyanates were also observed and discussed. The d-d transitions for high spin Fe(III) complexes are spin forbidden and generally uninformative. Those of Cu(II) are spin allowed and allow tentative structural proposals. Square planar and octahedral geometry are generally prevalent in the Cu(II) complexes with trigonal bipyramidal observed in few instances. The Fe(III) complexes are generally octahedral. Thirty-nine of the forty synthesised Cu(II) and Fe(III) complexes were catalytically active on the substrate (3,5-DTBC) in DMF with turnover rates (kcat) reported in the range of 1.86 ± 0.09 to 112.32 ± 3.72 h-1. From this pool of complexes, sixteen isostructural pairs were identified in terms of geometry, molecular formula and the source of the Mannich base and the following conclusions were made: The presence of thiocyanate in the metal complexes reduce catecholase activity; the Cu(II) complexes generally have better activity but the Fe(III) complexes become more relatively active with highly electron donating groups while the Cu(II) complexes become less; dinuclear complexes have greater activity than the mononuclear.
- Full Text:
- Date Issued: 2018
- Authors: Ayeni, Ayowole Olaolu
- Date: 2018
- Subjects: Mannich bases , Catechol , Catechol -- Oxidation , Thiocyanates , Catalysts
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62339 , vital:28156
- Description: The study focused on the design of new Cu(II) and Fe(III) complexes, with or without thiocyanate (NCS-), as possible candidates of catechol oxidation using 3,5-di-tert-butyl catechol (3,5-DTBC) as substrate. Two classes of Mannich bases were studied depending on the active methylene group from which they were formed, being either p-cresol or acetaminophen. The ligands were characterised by 1H and 13C NMR spectroscopy. Crystal structures of three of the ligands are newly reported, along with detailed discussion of polymorphism observed in one of the ligands, and the nature of the hydrogen within the ligands in the solid state as well as in solution. The Mannich bases behaved as bidentate (NO), tridentate (NNO) and tetradentate (NNOO) ligands on coordination to Cu(II) and Fe(III) ions in which the hydroxyl group may be protonated or deprotonated. Coordination was determined by IR spectroscopy, investigating shifts in vOH, vC-O and in vCNC of the Mannich bases. The vCNC stretching frequencies v1 and v2 of asymmetrical piperazine Mannich bases were observed to shift upward in few cases upon complexation and this is attributed to (chair-boat) conformational change. The mode of coordination of the thiocyanate was determined by IR spectroscopy. Of the forty metal complexes investigated, six groups of metal complexes were identified as follows: (i) Ma(Ln)aClb-cH2O; (ii) Ma(HLn)a(NCS)aClb; (iii) Ma(Ln)a(NCS)aClb; (iv) Ma(HLn)aClb-cH2O; (v) Ma(Ln)a(NCS)a-cH2O; (vi) Ma(HLn)a(NCS)a-cH2O where a = 1 - 2 ; b = 1 - 4, c = 1 - 8. Molar conductivity values of 4.38 - 161.77 Q-1.cm2.mol-1 for the Cu(II) and Fe(III) complexes in DMSO showed that they range from non-electrolytes to 1:1 and 1:2 electrolytes. Electronic spectra for the ligands and the complexes were conducted in DMF and DMSO. The ligands are characterised by and n→n* and n→n* transitions. Intraligand charge transfer transitions peculiar to the nitro group were observed at about 430 nm for the nitro containing ligands. On coordination, these bands overshadowed the d-d transitions particularly for the nitro-Mannich bases. On complexation, ligand to metal charge transfer transitions associated with the hydroxyl were observed between 320 - 420 nm. Charge transfer transitions associated with the thiocyanates were also observed and discussed. The d-d transitions for high spin Fe(III) complexes are spin forbidden and generally uninformative. Those of Cu(II) are spin allowed and allow tentative structural proposals. Square planar and octahedral geometry are generally prevalent in the Cu(II) complexes with trigonal bipyramidal observed in few instances. The Fe(III) complexes are generally octahedral. Thirty-nine of the forty synthesised Cu(II) and Fe(III) complexes were catalytically active on the substrate (3,5-DTBC) in DMF with turnover rates (kcat) reported in the range of 1.86 ± 0.09 to 112.32 ± 3.72 h-1. From this pool of complexes, sixteen isostructural pairs were identified in terms of geometry, molecular formula and the source of the Mannich base and the following conclusions were made: The presence of thiocyanate in the metal complexes reduce catecholase activity; the Cu(II) complexes generally have better activity but the Fe(III) complexes become more relatively active with highly electron donating groups while the Cu(II) complexes become less; dinuclear complexes have greater activity than the mononuclear.
- Full Text:
- Date Issued: 2018
Photosensitizer, pH sensing and optical limiting properties of BODIPY dyes
- Authors: May, Aviwe Khanya
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Halogenation , Photochemotherapy , Bromination , Photosensitizing compounds , Nonlinear optics , BODIPY dyes
- Language: English
- Type: text , Thesis , Masters , MA
- Identifier: http://hdl.handle.net/10962/63964 , vital:28515
- Description: A series of BODIPY dyes have been successfully synthesised and structurally characterised to examine the effect of halogenation at the 2,6-positions and the introduction of styryl and vinylene groups at the 3,5-positions. The photophysical properties were studied, to assess the effect of the enhancement of the rate of intersystem crossing through halogenation on the fluorescence properties and the generation of reactive oxygen species. This is important in the assessment of the suitability of applying these molecules as photosensitizer dyes for photodynamic therapy and photodynamic antimicrobial chemotherapy. Upon bromination, the dyes showed moderately high singlet oxygen quantum yields. The inclusion of BODIPY dyes into cyclodextrins was explored since it makes them water soluble and hence suitable for biomedical applications, but no singlet oxygen was detected in aqueous media for the inclusion complexes. In order to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions via a modified Knoevenagel condensation reaction. Since the main spectral band lies well above 532 nm, the second harmonic of the Nd:YAG laser, there is relatively weak absorbance at this wavelength. The 3,5-distyryl and 3,5-divinylene BODIPY dyes were assessed for their potential utility for application in nonlinear optics (NLO), and they demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in z-scan measurements. Furthermore, the dyes possess excellent optical limiting parameters, such as their third-order suspectibility and hyperpolarizability values, in a wide range of solvents. One dye containing dimethylamino moieties on styryl groups attached at the 3,5-positions was assessed for potential application as an on/off fluorescence sensor. The dye proved to be successful, since intramolecular charge transfer in the S1 state was eliminated in the presence of acid and this results in a fluorescence “turn on” effect. This process was found to be reversible with the addition of a base.
- Full Text:
- Date Issued: 2018
- Authors: May, Aviwe Khanya
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Halogenation , Photochemotherapy , Bromination , Photosensitizing compounds , Nonlinear optics , BODIPY dyes
- Language: English
- Type: text , Thesis , Masters , MA
- Identifier: http://hdl.handle.net/10962/63964 , vital:28515
- Description: A series of BODIPY dyes have been successfully synthesised and structurally characterised to examine the effect of halogenation at the 2,6-positions and the introduction of styryl and vinylene groups at the 3,5-positions. The photophysical properties were studied, to assess the effect of the enhancement of the rate of intersystem crossing through halogenation on the fluorescence properties and the generation of reactive oxygen species. This is important in the assessment of the suitability of applying these molecules as photosensitizer dyes for photodynamic therapy and photodynamic antimicrobial chemotherapy. Upon bromination, the dyes showed moderately high singlet oxygen quantum yields. The inclusion of BODIPY dyes into cyclodextrins was explored since it makes them water soluble and hence suitable for biomedical applications, but no singlet oxygen was detected in aqueous media for the inclusion complexes. In order to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions via a modified Knoevenagel condensation reaction. Since the main spectral band lies well above 532 nm, the second harmonic of the Nd:YAG laser, there is relatively weak absorbance at this wavelength. The 3,5-distyryl and 3,5-divinylene BODIPY dyes were assessed for their potential utility for application in nonlinear optics (NLO), and they demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in z-scan measurements. Furthermore, the dyes possess excellent optical limiting parameters, such as their third-order suspectibility and hyperpolarizability values, in a wide range of solvents. One dye containing dimethylamino moieties on styryl groups attached at the 3,5-positions was assessed for potential application as an on/off fluorescence sensor. The dye proved to be successful, since intramolecular charge transfer in the S1 state was eliminated in the presence of acid and this results in a fluorescence “turn on” effect. This process was found to be reversible with the addition of a base.
- Full Text:
- Date Issued: 2018
Antimalarial secondary metabolites from Morinda lucida
- Authors: Chithambo, Bertha
- Date: 2017
- Subjects: Botanical chemistry , Anthraquinones , Antimalarials , Rubiaceae -- Therapeutic use , Malaria -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/45730 , vital:25535
- Description: Antimalarial activities of secondary metabolites from Morinda lucida (Rubiaceae), were investigated. Even though M. lucida is traditionally used to treat malaria, diabetes, jaundice, hypertension, dysentery and many other diseases, the compounds in this plant have not yet been fully investigated and characterised. Most of the studies that have been done on this plant focused on the medicinal properties of the crude extracts but have not gone further to isolate and characterise the compounds. In this study, the methanol - dichloromethane crude extract from the bark of M. lucida was fractionated into fractions 1-8. Fractions 2-5 were purified in order to isolate active secondary metabolites. The isolated pure compounds were characterised and identified. An in vitro antimalarial assay was carried out on the crude extract, fractions, pure compounds and solutions made from different combinations of pure compounds using the parasite lactate dehydrogenase (pLDH) assay. An IC50 done on the methanolic crude extract gave a value of 25 µg/mL. The % cell viability for the crude extract in cell toxicity assay remained at 100%. Each of the pure compounds tested had very little activity. Their activities were increased when samples from the different compounds were mixed. One of these mixtures reduced malaria viability to about 22 % at 20 µM and gave an IC50 value of 17 µM. Antibacterial assays were also carried out on the crude extract and fractions. Fractions 2 and 3 were relatively active (MIC values ranging between 125-1000 µg/mL) against M. cattarhalis and E. faecalis. Fraction 2 was also the most active on S. typhimurium and S. aureus (MIC value of 1000 µg/mL) compared with the other fractions. This same fraction also showed some activity against M. tuberculosis with MIC90 and MIC99 values of 40.9 and 46.3 µg/mL respectively in an anti-tuberculosis assay.The following compounds, comprising of iridoids (asperuloside and asperulosidic acid), terpenoids (stigmasterol, P-sitosterol, campesterol, lanosterol and cycloartenol) and anthraquinones [5,15-O-dimethylmorindol, 1,7-dihydroxy-2-methoxy-5-(methoxymethyl) anthraquinone and 1,6-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone], were isolated. All these compounds have been isolated from different plants before with the exception of 1,7-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone and 1,6-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone which were tentatively assigned the structures due to insufficient data. To the best of our knowledge, this is the first report on the identification of all of the mentioned compounds, with the exception of ß-sitosterol and stigmasterol, from M. lucida. Molecular docking was performed on one of the isolated anthraquinones (5,15-O- dimethylmorindol) to check if it can bind to cytochrome bci, a known target for atovaquone. This compound interacted with the same amino acids that atovaquone, a well known antimalarial agent, interacted with on cytochrome bc1 indicating a possible similar mode of action.
- Full Text:
- Date Issued: 2017
- Authors: Chithambo, Bertha
- Date: 2017
- Subjects: Botanical chemistry , Anthraquinones , Antimalarials , Rubiaceae -- Therapeutic use , Malaria -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/45730 , vital:25535
- Description: Antimalarial activities of secondary metabolites from Morinda lucida (Rubiaceae), were investigated. Even though M. lucida is traditionally used to treat malaria, diabetes, jaundice, hypertension, dysentery and many other diseases, the compounds in this plant have not yet been fully investigated and characterised. Most of the studies that have been done on this plant focused on the medicinal properties of the crude extracts but have not gone further to isolate and characterise the compounds. In this study, the methanol - dichloromethane crude extract from the bark of M. lucida was fractionated into fractions 1-8. Fractions 2-5 were purified in order to isolate active secondary metabolites. The isolated pure compounds were characterised and identified. An in vitro antimalarial assay was carried out on the crude extract, fractions, pure compounds and solutions made from different combinations of pure compounds using the parasite lactate dehydrogenase (pLDH) assay. An IC50 done on the methanolic crude extract gave a value of 25 µg/mL. The % cell viability for the crude extract in cell toxicity assay remained at 100%. Each of the pure compounds tested had very little activity. Their activities were increased when samples from the different compounds were mixed. One of these mixtures reduced malaria viability to about 22 % at 20 µM and gave an IC50 value of 17 µM. Antibacterial assays were also carried out on the crude extract and fractions. Fractions 2 and 3 were relatively active (MIC values ranging between 125-1000 µg/mL) against M. cattarhalis and E. faecalis. Fraction 2 was also the most active on S. typhimurium and S. aureus (MIC value of 1000 µg/mL) compared with the other fractions. This same fraction also showed some activity against M. tuberculosis with MIC90 and MIC99 values of 40.9 and 46.3 µg/mL respectively in an anti-tuberculosis assay.The following compounds, comprising of iridoids (asperuloside and asperulosidic acid), terpenoids (stigmasterol, P-sitosterol, campesterol, lanosterol and cycloartenol) and anthraquinones [5,15-O-dimethylmorindol, 1,7-dihydroxy-2-methoxy-5-(methoxymethyl) anthraquinone and 1,6-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone], were isolated. All these compounds have been isolated from different plants before with the exception of 1,7-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone and 1,6-dihydroxy-2-methoxy-5-(methoxymethyl)anthraquinone which were tentatively assigned the structures due to insufficient data. To the best of our knowledge, this is the first report on the identification of all of the mentioned compounds, with the exception of ß-sitosterol and stigmasterol, from M. lucida. Molecular docking was performed on one of the isolated anthraquinones (5,15-O- dimethylmorindol) to check if it can bind to cytochrome bci, a known target for atovaquone. This compound interacted with the same amino acids that atovaquone, a well known antimalarial agent, interacted with on cytochrome bc1 indicating a possible similar mode of action.
- Full Text:
- Date Issued: 2017
Characterisation, antimalarial and biological activities of secondary metabolites from leaves of anonidium mannii
- Authors: Makoni, Pfungwa Gervase
- Date: 2017
- Subjects: Anonidium mannii -- Therapeutic use , Botanical chemistry , Annonaceae -- Therapeutic use , Apocynaceae -- Therapeutic use , Malaria -- Chemotherapy , Tuberculosis -- Chemotherapy , Bacterial diseases -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4797 , vital:20725
- Description: Anonidium mannii is a plant of the Annonaceae genus which is used traditionally in Africa for the treatment of gonorrhoea, malaria, cancer, skin inflammation and dysentery. In this study we will evaluate antimalarial, antifungal, anti - tuberculosis, antibacterial activities and cytotoxicity of different fractions in order to provide a scientific rationale for the traditional use of Anonidium mannii as well as provide possible novel drugs in the treatment of multi drug resistant strains of parasites and bacteria. Extracts from dried leaves were obtained by using solvent extraction and different fractions obtained using column chromatography eluted with solvents of varying polarities to obtain a wide range of metabolites. The antimalarial activity of the various fractions and some pure compounds was evaluated using plasmodium lactate dehydrogenase (pLDH) assay. Cytotoxicity was evaluated using HeLa cells while anti – tuberculosis assay was evaluated using the green fluorescent protein. Antibacterial activity of the extracts was evaluated using micro-dilution assay against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria and Gram-negative (Escherichia coli and Salmonella typhi) bacteria. Antifungal activity was evaluated against Candida albicans. The antimalarial assays yielded some fractions with promising IC50 values. The selected fractions yielded activities ranging between 0.73 μg/mL and 20.23 μg/mL. The fraction with the best activity was obtained from a hexane/ethyl acetate fraction. AM1C, a cholestane, showed the best activity from the pure metabolites that were screened. AM3C, stigmasterol, a pure compound gave the best antifungal activity with an MIC of 0.063 μg/mL. AM9C another pure compound (sterol) showed the best activity against S. typhi with a value of 0.031 μg/mL. AM2C a pure compound showed an activity of 0.063 μg/mL against E. faecalis. The best cytotoxicity was demonstrated by the fraction C2AM3P with a cell viability of 7.1 ± 0.2 % while AM1C had a viability of 20.2 ± 1.2 %. Several pure metabolites were isolated and four of these were positively identified as steroids. Of these steroids the structure of three novel metabolites from A. mannii was deduced. The study showed promising antibacterial, antifungal, anti – tuberculosis, antimalarial and anticancer activity of A. mannii. These results validate the use of A. manni against cancer, skin inflammation which is caused by fungus, malaria and bacterial diseases.
- Full Text:
- Date Issued: 2017
- Authors: Makoni, Pfungwa Gervase
- Date: 2017
- Subjects: Anonidium mannii -- Therapeutic use , Botanical chemistry , Annonaceae -- Therapeutic use , Apocynaceae -- Therapeutic use , Malaria -- Chemotherapy , Tuberculosis -- Chemotherapy , Bacterial diseases -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4797 , vital:20725
- Description: Anonidium mannii is a plant of the Annonaceae genus which is used traditionally in Africa for the treatment of gonorrhoea, malaria, cancer, skin inflammation and dysentery. In this study we will evaluate antimalarial, antifungal, anti - tuberculosis, antibacterial activities and cytotoxicity of different fractions in order to provide a scientific rationale for the traditional use of Anonidium mannii as well as provide possible novel drugs in the treatment of multi drug resistant strains of parasites and bacteria. Extracts from dried leaves were obtained by using solvent extraction and different fractions obtained using column chromatography eluted with solvents of varying polarities to obtain a wide range of metabolites. The antimalarial activity of the various fractions and some pure compounds was evaluated using plasmodium lactate dehydrogenase (pLDH) assay. Cytotoxicity was evaluated using HeLa cells while anti – tuberculosis assay was evaluated using the green fluorescent protein. Antibacterial activity of the extracts was evaluated using micro-dilution assay against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria and Gram-negative (Escherichia coli and Salmonella typhi) bacteria. Antifungal activity was evaluated against Candida albicans. The antimalarial assays yielded some fractions with promising IC50 values. The selected fractions yielded activities ranging between 0.73 μg/mL and 20.23 μg/mL. The fraction with the best activity was obtained from a hexane/ethyl acetate fraction. AM1C, a cholestane, showed the best activity from the pure metabolites that were screened. AM3C, stigmasterol, a pure compound gave the best antifungal activity with an MIC of 0.063 μg/mL. AM9C another pure compound (sterol) showed the best activity against S. typhi with a value of 0.031 μg/mL. AM2C a pure compound showed an activity of 0.063 μg/mL against E. faecalis. The best cytotoxicity was demonstrated by the fraction C2AM3P with a cell viability of 7.1 ± 0.2 % while AM1C had a viability of 20.2 ± 1.2 %. Several pure metabolites were isolated and four of these were positively identified as steroids. Of these steroids the structure of three novel metabolites from A. mannii was deduced. The study showed promising antibacterial, antifungal, anti – tuberculosis, antimalarial and anticancer activity of A. mannii. These results validate the use of A. manni against cancer, skin inflammation which is caused by fungus, malaria and bacterial diseases.
- Full Text:
- Date Issued: 2017