Cumulative effects of living conditions and working conditions on the health, well-being, and work ability of nurses in Grahamstown East and West
- Authors: Hodgskiss, Jodi Lyndall
- Date: 2010
- Subjects: Nurses -- South Africa -- Grahamstown , Nurses -- Employment -- South Africa -- Grahamstown , Nurses -- Job stress -- South Africa -- Grahamstown , Nurses -- Job satisfaction -- South Africa -- Grahamstown , Nurses -- Economic conditions -- South Africa -- Grahamstown , Nurses -- Social conditions -- South Africa -- Grahamstown , Quality of life -- South Africa -- Grahamstown , Social indicators -- South Africa -- Grahamstown
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5108 , http://hdl.handle.net/10962/d1005186 , Nurses -- South Africa -- Grahamstown , Nurses -- Employment -- South Africa -- Grahamstown , Nurses -- Job stress -- South Africa -- Grahamstown , Nurses -- Job satisfaction -- South Africa -- Grahamstown , Nurses -- Economic conditions -- South Africa -- Grahamstown , Nurses -- Social conditions -- South Africa -- Grahamstown , Quality of life -- South Africa -- Grahamstown , Social indicators -- South Africa -- Grahamstown
- Description: Despite the many changes that have occurred in South Africa since the end of apartheid, there are still residual effects of it, as is evidenced in the disparity of living conditions between different racial groups. It is also evident that there are differences in the work tasks and working conditions of nurses working in different work environments. This project looks at how living conditions as well as working conditions interactively affect the health, subjective well-being, and work ability of nurses. Questionnaires were completed by, and interviews were conducted with nurses from Settlers Hospital and seven municipal clinics within Grahamstown (n=152). The participation rate was approximately 71%. The questionnaires included self-report, forced-choice questions regarding basic demographics of the nurses, work conditions, living conditions, subjective satisfaction levels, as well as a simplified version of the Nordic Questionnaire of Musculoskeletal Strain (Kuorinka et al., 1987), and the Work Ability Index (WAI) (Tuomi et al., 2006). The questionnaires were translated into Afrikaans and IsiXhosa. One-on-one interviews were conducted with the participants, in order to obtain a 24-hour dietary recall, an indication of physical activity levels, as well as measurements of stature, mass, waist girth and hip girth. Factor analysis was performed to identify common variance from amongst the variables, while canonical correlations examined the interaction between the sets of factors. It was found that variables relating to demographic factors, living conditions, and working conditions were closely linked to each other. Factors from each of these groups were associated with life, health, and job satisfaction, anthropometric measures, musculoskeletal strain, and WAI scores. Satisfaction levels appeared to be largely determined by socioeconomic status, while anthropometrics, WAI scores, and levels of musculoskeletal strain were associated with levels of smoking and drinking, race, age, stature, position and tenure.
- Full Text:
- Date Issued: 2010
- Authors: Hodgskiss, Jodi Lyndall
- Date: 2010
- Subjects: Nurses -- South Africa -- Grahamstown , Nurses -- Employment -- South Africa -- Grahamstown , Nurses -- Job stress -- South Africa -- Grahamstown , Nurses -- Job satisfaction -- South Africa -- Grahamstown , Nurses -- Economic conditions -- South Africa -- Grahamstown , Nurses -- Social conditions -- South Africa -- Grahamstown , Quality of life -- South Africa -- Grahamstown , Social indicators -- South Africa -- Grahamstown
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5108 , http://hdl.handle.net/10962/d1005186 , Nurses -- South Africa -- Grahamstown , Nurses -- Employment -- South Africa -- Grahamstown , Nurses -- Job stress -- South Africa -- Grahamstown , Nurses -- Job satisfaction -- South Africa -- Grahamstown , Nurses -- Economic conditions -- South Africa -- Grahamstown , Nurses -- Social conditions -- South Africa -- Grahamstown , Quality of life -- South Africa -- Grahamstown , Social indicators -- South Africa -- Grahamstown
- Description: Despite the many changes that have occurred in South Africa since the end of apartheid, there are still residual effects of it, as is evidenced in the disparity of living conditions between different racial groups. It is also evident that there are differences in the work tasks and working conditions of nurses working in different work environments. This project looks at how living conditions as well as working conditions interactively affect the health, subjective well-being, and work ability of nurses. Questionnaires were completed by, and interviews were conducted with nurses from Settlers Hospital and seven municipal clinics within Grahamstown (n=152). The participation rate was approximately 71%. The questionnaires included self-report, forced-choice questions regarding basic demographics of the nurses, work conditions, living conditions, subjective satisfaction levels, as well as a simplified version of the Nordic Questionnaire of Musculoskeletal Strain (Kuorinka et al., 1987), and the Work Ability Index (WAI) (Tuomi et al., 2006). The questionnaires were translated into Afrikaans and IsiXhosa. One-on-one interviews were conducted with the participants, in order to obtain a 24-hour dietary recall, an indication of physical activity levels, as well as measurements of stature, mass, waist girth and hip girth. Factor analysis was performed to identify common variance from amongst the variables, while canonical correlations examined the interaction between the sets of factors. It was found that variables relating to demographic factors, living conditions, and working conditions were closely linked to each other. Factors from each of these groups were associated with life, health, and job satisfaction, anthropometric measures, musculoskeletal strain, and WAI scores. Satisfaction levels appeared to be largely determined by socioeconomic status, while anthropometrics, WAI scores, and levels of musculoskeletal strain were associated with levels of smoking and drinking, race, age, stature, position and tenure.
- Full Text:
- Date Issued: 2010
Effect of repeated eccentric demands placed on the lower limb musculature during simulated Rugby Union play
- Authors: Brown, Lisa Gill
- Date: 2010
- Subjects: Sports injuries , Muscles -- Wounds and injuries , Tendons -- Wounds and injuries , Muscles -- Examination , Rugby football injuries , Rugby Union football players
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5114 , http://hdl.handle.net/10962/d1005192 , Sports injuries , Muscles -- Wounds and injuries , Tendons -- Wounds and injuries , Muscles -- Examination , Rugby football injuries , Rugby Union football players
- Description: Epidemiological studies consistently report that muscular strains are a primary injury type in rugby union with the majority of the strains occurring to the quadricep and hamstring musculature. Recently it has been suggested that poor eccentric muscular strength is a precursor to hamstring and quadriceps strains during intermittent sports that require rapid acceleration and deceleration. Despite the high incidence of these muscle injuries in Rugby Union there has been little research into the possible mechanisms involved. Thus, the purpose of this study was to measure the physiological and perceptual responses during a simulated Rugby Union laboratory protocol and further, to identify changes in muscle recruitment patterns and muscle strength over time by comparing this protocol to a continuous, constant load protocol covering the same distance. The experimental condition (EXP) required university level players to perform 80 minutes of simulated rugby union play in a laboratory setting (on a walkway of 22m) which was compared to that of a control condition (CON) which involved subjects covering the same distance, at a constant speed of 4.2km.h-1 on a treadmill. Physiological, biophysical and perceptual responses were measured pre-, at half-time and post-protocol. Heart rate was significantly (p<0.01) greater as a result of EXP in comparison to the CON. Electromyography (EMG) of the vastus medialis was significantly (p<0.01) greater during the CON protocol. The EXP condition elicited higher iEMG activity in the hamstring musculature at all time intervals. In addition the iEMG of the semitendinosus decreased significantly (p<0.01) as a result of the EXP protocol. Peak eccentric knee extensors (EXT) (-13.19%) and flexors (FLEX) (-12.81%) torque decreased significantly during the experimental protocol. After passive half-time (236.67 + 56.27Nm (EXT) and 173.89 + 33.3NM (FLEX)) and at the end of the protocol (220.39 + 55.16Nm and 162.89 + 30.66Nm) reduced relative to pre protocol (253.89 + 54.54Nm and 186.83 + 33.3Nm). Peak eccentric knee extensors did not change during the control protocol. „Central‟ and ‟Local” Rating of Perceived Exertion values were significantly (P<0.01) greater during the EXP protocol with an increased incidence of hamstring discomfort and perceived pain (5 out of 10). The EXP protocol resulted in significantly (p<0.01) increased incidence of delayed onset muscle soreness (DOMS). In conclusion, a stop-start laboratory protocol elicited increased heart rate, negatively impacted on muscle activity of the hamstrings, decreased eccentric strength in the lower limb musculature, resulted in increased ratings of „Central‟ and „Local‟ exertion and increased pain perception and increased incidence of DOMS. Thus, a stop-start rugby specific laboratory protocol has a negative impact on performance. Due to the specificity of the protocol being designed to match the demands of competitive match play it is expected that these changes in heart rate, muscle activity and strength, particularly eccentric strength, will impact negativity on performance during rugby match play and increase the likelihood of injury
- Full Text:
- Date Issued: 2010
- Authors: Brown, Lisa Gill
- Date: 2010
- Subjects: Sports injuries , Muscles -- Wounds and injuries , Tendons -- Wounds and injuries , Muscles -- Examination , Rugby football injuries , Rugby Union football players
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5114 , http://hdl.handle.net/10962/d1005192 , Sports injuries , Muscles -- Wounds and injuries , Tendons -- Wounds and injuries , Muscles -- Examination , Rugby football injuries , Rugby Union football players
- Description: Epidemiological studies consistently report that muscular strains are a primary injury type in rugby union with the majority of the strains occurring to the quadricep and hamstring musculature. Recently it has been suggested that poor eccentric muscular strength is a precursor to hamstring and quadriceps strains during intermittent sports that require rapid acceleration and deceleration. Despite the high incidence of these muscle injuries in Rugby Union there has been little research into the possible mechanisms involved. Thus, the purpose of this study was to measure the physiological and perceptual responses during a simulated Rugby Union laboratory protocol and further, to identify changes in muscle recruitment patterns and muscle strength over time by comparing this protocol to a continuous, constant load protocol covering the same distance. The experimental condition (EXP) required university level players to perform 80 minutes of simulated rugby union play in a laboratory setting (on a walkway of 22m) which was compared to that of a control condition (CON) which involved subjects covering the same distance, at a constant speed of 4.2km.h-1 on a treadmill. Physiological, biophysical and perceptual responses were measured pre-, at half-time and post-protocol. Heart rate was significantly (p<0.01) greater as a result of EXP in comparison to the CON. Electromyography (EMG) of the vastus medialis was significantly (p<0.01) greater during the CON protocol. The EXP condition elicited higher iEMG activity in the hamstring musculature at all time intervals. In addition the iEMG of the semitendinosus decreased significantly (p<0.01) as a result of the EXP protocol. Peak eccentric knee extensors (EXT) (-13.19%) and flexors (FLEX) (-12.81%) torque decreased significantly during the experimental protocol. After passive half-time (236.67 + 56.27Nm (EXT) and 173.89 + 33.3NM (FLEX)) and at the end of the protocol (220.39 + 55.16Nm and 162.89 + 30.66Nm) reduced relative to pre protocol (253.89 + 54.54Nm and 186.83 + 33.3Nm). Peak eccentric knee extensors did not change during the control protocol. „Central‟ and ‟Local” Rating of Perceived Exertion values were significantly (P<0.01) greater during the EXP protocol with an increased incidence of hamstring discomfort and perceived pain (5 out of 10). The EXP protocol resulted in significantly (p<0.01) increased incidence of delayed onset muscle soreness (DOMS). In conclusion, a stop-start laboratory protocol elicited increased heart rate, negatively impacted on muscle activity of the hamstrings, decreased eccentric strength in the lower limb musculature, resulted in increased ratings of „Central‟ and „Local‟ exertion and increased pain perception and increased incidence of DOMS. Thus, a stop-start rugby specific laboratory protocol has a negative impact on performance. Due to the specificity of the protocol being designed to match the demands of competitive match play it is expected that these changes in heart rate, muscle activity and strength, particularly eccentric strength, will impact negativity on performance during rugby match play and increase the likelihood of injury
- Full Text:
- Date Issued: 2010
The effects of booster breaks during a sedentary night shift on physiological, psychomotor, psycho-physiological, and cognitive performance over a 3 night shift habituation phase
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- Date Issued: 2010
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- Date Issued: 2010
The effects of glove fit on task performance and on the human operator
- Authors: Stack, Jessica Danielle
- Date: 2010
- Subjects: Hand -- Anatomy , Hand -- Wounds and injuries , Hand -- Care and hygiene , Gloves , Safety education, Industrial , Human-machine systems , Industrial safety , Industrial accidents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5119 , http://hdl.handle.net/10962/d1005197 , Hand -- Anatomy , Hand -- Wounds and injuries , Hand -- Care and hygiene , Gloves , Safety education, Industrial , Human-machine systems , Industrial safety , Industrial accidents
- Description: The hand is one of the most complex of all of the anatomical structures in the human body. It has been found that hand injuries are among the most frequent injuries that occur to the body, predominantly during industrial activities. It has therefore been concluded that more research is needed into protective factors, such as glove use. The design features of a glove emphasise either protection or performance. There is often a trade-off between increased safety and performance capability when donning gloves. It has been determined that gloves which are fitted and comfortable for the worker may provide the best compromise between protective functions and decreased performance. This investigation aimed to assess the influence of glove fit on the performance attributes of industrial tasks, as well as on the responses of the human operator. Glove fit was analysed as 35 male participants donned three different glove sizes during each test, including a best-fitting glove, a glove one size smaller than best-fitting, and a glove one size larger than best-fitting. For each glove size, gloves of two differing materials were tested, namely nitrile and neoprene. A barehanded condition was also tested, totalling seven gloved/barehanded conditions for each test. The seven conditions were assessed in a laboratory setting in a battery of tests. This consisted of components of task performance, including maximum pulling and pushing force, maximum torque, precision of force, tactility, speed and accuracy and dexterity. The performance responses were recorded, as well as participants’ perceptual responses using the Rating of Perceived Exertion scale, and muscle activity. Six muscles were selected: Flexor Digitorum Superficialis, Flexor Pollicus Longus, Extensor Carpi Ulnaris, Extensor Carpi Radialis, Flexor Carpi Ulnaris and Flexor Carpi Radialis. The results revealed that glove fit does affect certain spects of performance, and influences human operator responses for selected task components. Furthermore, discrepancies were distinguished between orking barehanded and working with an optimally fitted glove. There was also a glove material effect established. Overall, it was found that muscle activity when exerting maximum force in a pushing and pulling direction was optimal with the nitrile glove material. Maximum torque performance was enhanced with the use of a best-fitting glove, as compared with an ill-fitting glove or barehanded work. Force precision was preferable when barehanded, as opposed to the tactility task which rendered optimal results with a best-fitting glove. The same was found for speed and accuracy results, as glove fit appeared to have no effect on performance, but performance was improved when participants were barehanded. Dexterity performance was the most conclusively influenced by the conditions, resulting in barehanded performance being optimal. However, should a glove be necessary for a given task, an optimally-fitted glove which is of a thinner material would be recommended. It is necessary to distinguish the performance components of a task within industry and select the most appropriate glove for optimal performance and the least risk of overexertion.
- Full Text:
- Date Issued: 2010
- Authors: Stack, Jessica Danielle
- Date: 2010
- Subjects: Hand -- Anatomy , Hand -- Wounds and injuries , Hand -- Care and hygiene , Gloves , Safety education, Industrial , Human-machine systems , Industrial safety , Industrial accidents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5119 , http://hdl.handle.net/10962/d1005197 , Hand -- Anatomy , Hand -- Wounds and injuries , Hand -- Care and hygiene , Gloves , Safety education, Industrial , Human-machine systems , Industrial safety , Industrial accidents
- Description: The hand is one of the most complex of all of the anatomical structures in the human body. It has been found that hand injuries are among the most frequent injuries that occur to the body, predominantly during industrial activities. It has therefore been concluded that more research is needed into protective factors, such as glove use. The design features of a glove emphasise either protection or performance. There is often a trade-off between increased safety and performance capability when donning gloves. It has been determined that gloves which are fitted and comfortable for the worker may provide the best compromise between protective functions and decreased performance. This investigation aimed to assess the influence of glove fit on the performance attributes of industrial tasks, as well as on the responses of the human operator. Glove fit was analysed as 35 male participants donned three different glove sizes during each test, including a best-fitting glove, a glove one size smaller than best-fitting, and a glove one size larger than best-fitting. For each glove size, gloves of two differing materials were tested, namely nitrile and neoprene. A barehanded condition was also tested, totalling seven gloved/barehanded conditions for each test. The seven conditions were assessed in a laboratory setting in a battery of tests. This consisted of components of task performance, including maximum pulling and pushing force, maximum torque, precision of force, tactility, speed and accuracy and dexterity. The performance responses were recorded, as well as participants’ perceptual responses using the Rating of Perceived Exertion scale, and muscle activity. Six muscles were selected: Flexor Digitorum Superficialis, Flexor Pollicus Longus, Extensor Carpi Ulnaris, Extensor Carpi Radialis, Flexor Carpi Ulnaris and Flexor Carpi Radialis. The results revealed that glove fit does affect certain spects of performance, and influences human operator responses for selected task components. Furthermore, discrepancies were distinguished between orking barehanded and working with an optimally fitted glove. There was also a glove material effect established. Overall, it was found that muscle activity when exerting maximum force in a pushing and pulling direction was optimal with the nitrile glove material. Maximum torque performance was enhanced with the use of a best-fitting glove, as compared with an ill-fitting glove or barehanded work. Force precision was preferable when barehanded, as opposed to the tactility task which rendered optimal results with a best-fitting glove. The same was found for speed and accuracy results, as glove fit appeared to have no effect on performance, but performance was improved when participants were barehanded. Dexterity performance was the most conclusively influenced by the conditions, resulting in barehanded performance being optimal. However, should a glove be necessary for a given task, an optimally-fitted glove which is of a thinner material would be recommended. It is necessary to distinguish the performance components of a task within industry and select the most appropriate glove for optimal performance and the least risk of overexertion.
- Full Text:
- Date Issued: 2010
The impact of a one-hour self-selected nap opportunity on physiological and performance variables during a simulated night shift
- Authors: Davy, Jonathan Patrick
- Date: 2010
- Subjects: Night work , Naps (sleep) in the workplace , Naps (sleep) in the workplace -- Case studies , Shift systems
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5123 , http://hdl.handle.net/10962/d1005201 , Night work , Naps (sleep) in the workplace , Naps (sleep) in the workplace -- Case studies , Shift systems
- Description: Napping has been explored extensively as a means of counteracting the negative effects associated with shift work. A significant amount of this research has focused on the implementation of scheduled naps, with few studies considering flexible nap schemes. The current study therefore aimed to assess the effects of a flexible nap opportunity on the physiological, cognitive, performance, neurophysiological and subjective responses of a group of non shift workers over the course of a three-day simulated night shift regime. Additional foci were the effects of the nap condition on the extent of the circadian adaptation of the subjects to the irregular work schedule and the circadian-related influences associated with being awake during the night. 36 subjects – 18 males and 18 females – were recruited to participate in the current study. The data collection spanned twelve days, during which four, three-day long shift cycles were set up: three night shift cycles and one day shift cycle. During each night shift cycle, three separate experimental conditions were staggered, namely the nap condition, the no nap condition and a booster break condition (a collaborative study that completed the setup). The day shift served as a further comparison. Each cycle comprised of 12 subjects, which meant there were four subjects per condition during each cycle. The shifts were 8 hours in duration, with the no nap group following a standard break schedule evinced in industry. The three breaks taken during the shifts amounted to a total time of 1 hour. The nap group was afforded a 1 hour flexible nap opportunity between 00h00 and 03h00 with no other breaks. Therefore, both conditions had the same amount of work time. During the shifts, subjects performed two simple, low arousal tasks (beading and packing) and completed a test battery roughly every two hours which was comprised of physiological, performance, neurophysiological and subjective measures. It was found that the inclusion of the nap opportunity significantly improved output performance and response time during a low precision, modified Fitts tapping task over the course of three night shifts, relative to no napping. Physiologically, napping resulted in higher heart rate frequency measures by the end of the shifts, which were also accompanied by significant reductions in subjective sleepiness ratings during all iii the night shifts. The nap group’s responses in this case, did not differ significantly from those of the day shift. Both simple reaction time and memory performances improved as a result of the nap inclusion, but only during the third night shift. The majority of the measures included in the research also depicted the effects of the circadian rhythm, which was indicative of the pronounced effect that this natural biological down regulation has on performance during the night. Napping reduced the severity of these effects during beading performance and measures of subjective sleepiness. With regard to habituation, the nap opportunity also resulted in positive changes in the responses of beading performance, high precision response time, simple reaction time and both subjective sleepiness measures, relative to no napping. Sleep diary responses indicated that although sleep length and quality during the day were significantly reduced for both night-time conditions, recovery sleep (length and quality) for the nap group did not differ significantly from the no nap group. The findings of this research indicate that the inclusion of a flexible napping opportunity during the night shift had positive effects on some physiological, performance and subjective responses, and that this intervention is as beneficial as scheduled napping. Specifically, napping resulted in a significantly higher output during the beading task, relative to the no nap group despite the duration of work time being the same. As such the introduction of a flexible, self-selected nap opportunity is a practical, effective and individual-specific means of alleviating the negative effects of shift work, while improving certain performance parameters. Therefore, industries should consider its inclusion in their fatigue management programs. However, contextspecific considerations must be made, with regard work scheduling, individual differences and task demands when implementing such an intervention. This will ensure that its introduction will be well received and in time, lessen the health and work-related decrements associated with shift work.
- Full Text:
- Date Issued: 2010
- Authors: Davy, Jonathan Patrick
- Date: 2010
- Subjects: Night work , Naps (sleep) in the workplace , Naps (sleep) in the workplace -- Case studies , Shift systems
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5123 , http://hdl.handle.net/10962/d1005201 , Night work , Naps (sleep) in the workplace , Naps (sleep) in the workplace -- Case studies , Shift systems
- Description: Napping has been explored extensively as a means of counteracting the negative effects associated with shift work. A significant amount of this research has focused on the implementation of scheduled naps, with few studies considering flexible nap schemes. The current study therefore aimed to assess the effects of a flexible nap opportunity on the physiological, cognitive, performance, neurophysiological and subjective responses of a group of non shift workers over the course of a three-day simulated night shift regime. Additional foci were the effects of the nap condition on the extent of the circadian adaptation of the subjects to the irregular work schedule and the circadian-related influences associated with being awake during the night. 36 subjects – 18 males and 18 females – were recruited to participate in the current study. The data collection spanned twelve days, during which four, three-day long shift cycles were set up: three night shift cycles and one day shift cycle. During each night shift cycle, three separate experimental conditions were staggered, namely the nap condition, the no nap condition and a booster break condition (a collaborative study that completed the setup). The day shift served as a further comparison. Each cycle comprised of 12 subjects, which meant there were four subjects per condition during each cycle. The shifts were 8 hours in duration, with the no nap group following a standard break schedule evinced in industry. The three breaks taken during the shifts amounted to a total time of 1 hour. The nap group was afforded a 1 hour flexible nap opportunity between 00h00 and 03h00 with no other breaks. Therefore, both conditions had the same amount of work time. During the shifts, subjects performed two simple, low arousal tasks (beading and packing) and completed a test battery roughly every two hours which was comprised of physiological, performance, neurophysiological and subjective measures. It was found that the inclusion of the nap opportunity significantly improved output performance and response time during a low precision, modified Fitts tapping task over the course of three night shifts, relative to no napping. Physiologically, napping resulted in higher heart rate frequency measures by the end of the shifts, which were also accompanied by significant reductions in subjective sleepiness ratings during all iii the night shifts. The nap group’s responses in this case, did not differ significantly from those of the day shift. Both simple reaction time and memory performances improved as a result of the nap inclusion, but only during the third night shift. The majority of the measures included in the research also depicted the effects of the circadian rhythm, which was indicative of the pronounced effect that this natural biological down regulation has on performance during the night. Napping reduced the severity of these effects during beading performance and measures of subjective sleepiness. With regard to habituation, the nap opportunity also resulted in positive changes in the responses of beading performance, high precision response time, simple reaction time and both subjective sleepiness measures, relative to no napping. Sleep diary responses indicated that although sleep length and quality during the day were significantly reduced for both night-time conditions, recovery sleep (length and quality) for the nap group did not differ significantly from the no nap group. The findings of this research indicate that the inclusion of a flexible napping opportunity during the night shift had positive effects on some physiological, performance and subjective responses, and that this intervention is as beneficial as scheduled napping. Specifically, napping resulted in a significantly higher output during the beading task, relative to the no nap group despite the duration of work time being the same. As such the introduction of a flexible, self-selected nap opportunity is a practical, effective and individual-specific means of alleviating the negative effects of shift work, while improving certain performance parameters. Therefore, industries should consider its inclusion in their fatigue management programs. However, contextspecific considerations must be made, with regard work scheduling, individual differences and task demands when implementing such an intervention. This will ensure that its introduction will be well received and in time, lessen the health and work-related decrements associated with shift work.
- Full Text:
- Date Issued: 2010
The isolation of muscle activity and ground reaction force patterns associated with postural control in four load manipulation tasks
- Authors: Pettengell, Clare Louise
- Date: 2010
- Subjects: Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5125 , http://hdl.handle.net/10962/d1005203 , Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Description: Although much effort has been placed into the reduction of risks associated with manual materials handling, risk of musculoskeletal disorder development remains high. This may be due to the additional muscle activity necessary for the maintenance of postural equilibrium during work tasks. This research proposes that postural control and subsequent additional muscle activity is influenced by the magnitude of the external load and the degree of body movement. The objective of this research was to identify whether performing tasks with increased external load and with a greater degree of trunk motion places additional strain on the musculoskeletal system in excess of that imposed by task demands. Twenty-four male and twenty-four female subjects performed four load manipulation tasks under three loading conditions (0.8kg, 1.6kg, and 4kg). Each task comprised of a static and dynamic condition. For the static condition, subjects maintained a stipulated posture for ten seconds. The dynamic condition required subjects to move and replace a box once every three seconds, such that a complete lift and lower cycle was performed in six seconds. Throughout task completion, muscle activity of six pairs of trunk muscles were analysed using surface electromyography. This was accompanied by data regarding ground reaction forces obtained through the use of a force platform. After the completion of each condition subjects were required to identify and rate body discomfort. Differential analysis was used to isolate the muscle activity and ground reaction forces attributed to increased external load and increased trunk movement. It was found that the heaviest loading conditions (4kg) resulted in significantly greater (p<0.05) muscle activation in the majority of muscles during all tasks investigated. The trend of muscle activity attributed to load was similar in all significantly altered muscles and activation was greatest in the heaviest loading condition. A degree of movement efficiency occurred in some muscles when manipulating loads of 0.8kg and 1.6kg. At greater loads, this did not occur suggesting that heavier loading conditions result in additional strain on the body in excess of that imposed by task demands. In manipulated data, trend of vertical ground reaction forces increased with increased load in all tasks. Sagittal movement of the centre of pressure attributed to load was significantly affected in manipulated data in the second movement phase of the “hip shoulder” task and the second movement phase of the “hip twist” task. The “hip reach” task was most affected by increased load magnitude as muscle activity attributed to load was significantly different (p<0.05) under increased loading conditions in both movement phases in all muscles. Further, a significant interactional effect (p<0.05) between condition and data point was found in all muscles with the exception of the right and left lumbar erector spinae during the second movement phase of the “hip reach” task. Muscle activity associated with increased trunk motion resulted in additional strain on the trunk muscles in the “hip shoulder” and “hip reach” tasks as muscle activity associated with the static component of each of the above tasks was greater than that of the dynamic tasks. Trend of ground reaction forces attributed to increased trunk motion generally increased under increased loading conditions. Additionally, a significant interactional effect (p<0.05) between load and muscle activity pattern was found in all muscles during all tasks, with the exception of the right rectus abdominis in the first movement phase of the “hip shoulder’ task, the left rectus abdominis in the second movement phase of the “hip knee” task and the right latissimus dorsi during the first movement phase of the “hip twist” task. This was accompanied by a significant interactional effect (p<0.05) between load and sagittal centre of pressure movement attributed to load, in both movement phases of all tasks investigated. From this research it can be proposed that guidelines may underestimate risk and subsequently under predict the strain in tasks performed with greater external loads as well as tasks which require a greater degree of trunk motion. Therefore, this study illustrates the importance of the consideration of the muscle activity necessary to maintain postural equilibrium in overall load analyses.
- Full Text:
- Date Issued: 2010
- Authors: Pettengell, Clare Louise
- Date: 2010
- Subjects: Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5125 , http://hdl.handle.net/10962/d1005203 , Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Description: Although much effort has been placed into the reduction of risks associated with manual materials handling, risk of musculoskeletal disorder development remains high. This may be due to the additional muscle activity necessary for the maintenance of postural equilibrium during work tasks. This research proposes that postural control and subsequent additional muscle activity is influenced by the magnitude of the external load and the degree of body movement. The objective of this research was to identify whether performing tasks with increased external load and with a greater degree of trunk motion places additional strain on the musculoskeletal system in excess of that imposed by task demands. Twenty-four male and twenty-four female subjects performed four load manipulation tasks under three loading conditions (0.8kg, 1.6kg, and 4kg). Each task comprised of a static and dynamic condition. For the static condition, subjects maintained a stipulated posture for ten seconds. The dynamic condition required subjects to move and replace a box once every three seconds, such that a complete lift and lower cycle was performed in six seconds. Throughout task completion, muscle activity of six pairs of trunk muscles were analysed using surface electromyography. This was accompanied by data regarding ground reaction forces obtained through the use of a force platform. After the completion of each condition subjects were required to identify and rate body discomfort. Differential analysis was used to isolate the muscle activity and ground reaction forces attributed to increased external load and increased trunk movement. It was found that the heaviest loading conditions (4kg) resulted in significantly greater (p<0.05) muscle activation in the majority of muscles during all tasks investigated. The trend of muscle activity attributed to load was similar in all significantly altered muscles and activation was greatest in the heaviest loading condition. A degree of movement efficiency occurred in some muscles when manipulating loads of 0.8kg and 1.6kg. At greater loads, this did not occur suggesting that heavier loading conditions result in additional strain on the body in excess of that imposed by task demands. In manipulated data, trend of vertical ground reaction forces increased with increased load in all tasks. Sagittal movement of the centre of pressure attributed to load was significantly affected in manipulated data in the second movement phase of the “hip shoulder” task and the second movement phase of the “hip twist” task. The “hip reach” task was most affected by increased load magnitude as muscle activity attributed to load was significantly different (p<0.05) under increased loading conditions in both movement phases in all muscles. Further, a significant interactional effect (p<0.05) between condition and data point was found in all muscles with the exception of the right and left lumbar erector spinae during the second movement phase of the “hip reach” task. Muscle activity associated with increased trunk motion resulted in additional strain on the trunk muscles in the “hip shoulder” and “hip reach” tasks as muscle activity associated with the static component of each of the above tasks was greater than that of the dynamic tasks. Trend of ground reaction forces attributed to increased trunk motion generally increased under increased loading conditions. Additionally, a significant interactional effect (p<0.05) between load and muscle activity pattern was found in all muscles during all tasks, with the exception of the right rectus abdominis in the first movement phase of the “hip shoulder’ task, the left rectus abdominis in the second movement phase of the “hip knee” task and the right latissimus dorsi during the first movement phase of the “hip twist” task. This was accompanied by a significant interactional effect (p<0.05) between load and sagittal centre of pressure movement attributed to load, in both movement phases of all tasks investigated. From this research it can be proposed that guidelines may underestimate risk and subsequently under predict the strain in tasks performed with greater external loads as well as tasks which require a greater degree of trunk motion. Therefore, this study illustrates the importance of the consideration of the muscle activity necessary to maintain postural equilibrium in overall load analyses.
- Full Text:
- Date Issued: 2010
Time course of performance changes and fatigue markers during training for the ironman triathlon
- Authors: Joiner, Alexander Jason
- Date: 2010
- Subjects: Ironman triathlons -- Training , Physical education and training -- Physiological aspects , Endurance sports -- Training , Sports -- Physiological aspects , Fatigue
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5133 , http://hdl.handle.net/10962/d1005212 , Ironman triathlons -- Training , Physical education and training -- Physiological aspects , Endurance sports -- Training , Sports -- Physiological aspects , Fatigue
- Description:
Suboptimal preparation for the Ironman triathlon can have detrimental effects on mental and physical condition. The purpose of this longitudinal investigation was to examine the relationship between a number of performance changes and fatigue markers during training for an Ironman as well as immediately after the event, in an attempt to better understand the effects of ultraendurance training. Eighteen athletes training for the Ironman; South Africa, 2009 were recruited for the study. Over the 6 month data collection period body mass, training load (TRIMP and Session x RPE methods), physiological responses (waking heart rate, postural dizziness, sleep ratings), changes in psychological state (profile of mood states - POMS), reported immunological responses (symptoms of illness), biochemical changes (salivary cortisol and alpha amylase) and performance (8 km submaximal running time trial (TT) and race day performance) were measured. These responses were compared to a control sample (n=15). Results show a significant increase (p<0.05) in training load (3899.4 ± 2517.8) four weeks prior to the event. Fatigue scores significantly increased (p<0.05) concurrently with this significant increase (p<0.05) in training. TT performance did not significantly (p<0.05) alter during the time course of training. It was however strongly correlated to training load (R2=0.85) and modestly related to race performance (R2=0.65). The signs and symptoms of upper respiratory tract infections (URTI) were prevalent during the training period, decreasing during the taper and race period. Large standard deviations were found within the majority of the responses. During the final two weeks of preparation, tension scores were significantly increased (p<0.05) while training load significantly decreased (p<0.05) during the final week of preparation. Cortisol increased significantly (p<0.05) immediately post race (0.507±0.15
- Full Text:
- Date Issued: 2010
- Authors: Joiner, Alexander Jason
- Date: 2010
- Subjects: Ironman triathlons -- Training , Physical education and training -- Physiological aspects , Endurance sports -- Training , Sports -- Physiological aspects , Fatigue
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5133 , http://hdl.handle.net/10962/d1005212 , Ironman triathlons -- Training , Physical education and training -- Physiological aspects , Endurance sports -- Training , Sports -- Physiological aspects , Fatigue
- Description:
Suboptimal preparation for the Ironman triathlon can have detrimental effects on mental and physical condition. The purpose of this longitudinal investigation was to examine the relationship between a number of performance changes and fatigue markers during training for an Ironman as well as immediately after the event, in an attempt to better understand the effects of ultraendurance training. Eighteen athletes training for the Ironman; South Africa, 2009 were recruited for the study. Over the 6 month data collection period body mass, training load (TRIMP and Session x RPE methods), physiological responses (waking heart rate, postural dizziness, sleep ratings), changes in psychological state (profile of mood states - POMS), reported immunological responses (symptoms of illness), biochemical changes (salivary cortisol and alpha amylase) and performance (8 km submaximal running time trial (TT) and race day performance) were measured. These responses were compared to a control sample (n=15). Results show a significant increase (p<0.05) in training load (3899.4 ± 2517.8) four weeks prior to the event. Fatigue scores significantly increased (p<0.05) concurrently with this significant increase (p<0.05) in training. TT performance did not significantly (p<0.05) alter during the time course of training. It was however strongly correlated to training load (R2=0.85) and modestly related to race performance (R2=0.65). The signs and symptoms of upper respiratory tract infections (URTI) were prevalent during the training period, decreasing during the taper and race period. Large standard deviations were found within the majority of the responses. During the final two weeks of preparation, tension scores were significantly increased (p<0.05) while training load significantly decreased (p<0.05) during the final week of preparation. Cortisol increased significantly (p<0.05) immediately post race (0.507±0.15
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »