Movement patterns of Cape stumpnose, Rhabdosargus holubi (Sparidae), in the Kowie Estuary, South Africa
- Authors: Grant, Gareth Neil
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/982 , vital:20010
- Description: Rhabdosargus holubi is an ubiquitous estuary-dependent fishery species endemic to southern Africa. Although aspects of its recruitment dynamics from sea to estuary have received considerable research attention, little is known about its movement behaviour within estuarine systems. Fishery surveys have also revealed that R. holubi is a dominant species in catches within several temperate estuaries in South Africa. Therefore, investigating movement behaviour is fundamental to understanding the ecology of this species and providing a means for implementing effective fisheries management strategies. This study made use of passive acoustic telemetry to quantify the movement patterns of juvenile R. holubi in the Kowie Estuary, in the Eastern Cape Province of South Africa. Previous studies have revealed that surgically implanted transmitters may have adverse effects on the physiology and behaviour of tagged fish. Therefore, due to the small size of juvenile R. holubi, an a priori transmitter-effect experiment was undertaken. This experiment revealed that juvenile R. holubi (146-217 mm fork length) were not adversely affected by the surgical implantation of acoustic transmitters (7 mm Ø, 1.6 g out of water) and hence acoustic telemetry was well suited to monitoring the movements of this species. A 4-month telemetry study evaluated the movement patterns of 21 juveniles (140-190 mm fork length) tagged in three equal batches along the length of the estuary. Specific aspects of their movement included space use patterns, habitat connectivity, and the influences of geophysical cycles and environmental variables. Tagged fish exhibited high residency, which varied between each release site area. The mean length of estuary used was greater for the upper batch (15.65 ± 6.49 km) than the middle and lower batches (7.36 ± 3.68 and 2.67 ± 2 km, respectively). In terms of habitat connectivity, once the tagged fish left the estuary, they generally did not return. Tagged R. holubi spent the majority (83%) of their monitoring periods within the estuarine environment, with the sea (16%) and riverine (1%) environments being utilised to a lesser extent. Diel and tidal cycles influenced the movement patterns of juvenile R. holubi. However, the high levels of residency meant that fine-scale movements were difficult to detect due to the acoustic receiver deployment configuration (i.e. receivers moored one kilometer apart). The influence of environmental variables on the movement of individuals, modelled with general linear mixed models (GLMMs), revealed that the effects of river inflow and water temperature were greatest. Increased river inflow caused individuals to use larger portions of the estuary. Increased water temperature, particularly river temperature, caused individuals to shift their distributions downstream (towards the mouth of the estuary). This study highlighted the importance of estuarine nursery habitats to R. holubi, suggesting that a loss or reduction of healthy estuarine habitats may lead to significant declines in the abundance of this species. Furthermore, extreme resident behaviour suggests that no-take area closures (estuarine protected areas) would be an effective management strategy for this important fishery species.
- Full Text:
- Authors: Grant, Gareth Neil
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/982 , vital:20010
- Description: Rhabdosargus holubi is an ubiquitous estuary-dependent fishery species endemic to southern Africa. Although aspects of its recruitment dynamics from sea to estuary have received considerable research attention, little is known about its movement behaviour within estuarine systems. Fishery surveys have also revealed that R. holubi is a dominant species in catches within several temperate estuaries in South Africa. Therefore, investigating movement behaviour is fundamental to understanding the ecology of this species and providing a means for implementing effective fisheries management strategies. This study made use of passive acoustic telemetry to quantify the movement patterns of juvenile R. holubi in the Kowie Estuary, in the Eastern Cape Province of South Africa. Previous studies have revealed that surgically implanted transmitters may have adverse effects on the physiology and behaviour of tagged fish. Therefore, due to the small size of juvenile R. holubi, an a priori transmitter-effect experiment was undertaken. This experiment revealed that juvenile R. holubi (146-217 mm fork length) were not adversely affected by the surgical implantation of acoustic transmitters (7 mm Ø, 1.6 g out of water) and hence acoustic telemetry was well suited to monitoring the movements of this species. A 4-month telemetry study evaluated the movement patterns of 21 juveniles (140-190 mm fork length) tagged in three equal batches along the length of the estuary. Specific aspects of their movement included space use patterns, habitat connectivity, and the influences of geophysical cycles and environmental variables. Tagged fish exhibited high residency, which varied between each release site area. The mean length of estuary used was greater for the upper batch (15.65 ± 6.49 km) than the middle and lower batches (7.36 ± 3.68 and 2.67 ± 2 km, respectively). In terms of habitat connectivity, once the tagged fish left the estuary, they generally did not return. Tagged R. holubi spent the majority (83%) of their monitoring periods within the estuarine environment, with the sea (16%) and riverine (1%) environments being utilised to a lesser extent. Diel and tidal cycles influenced the movement patterns of juvenile R. holubi. However, the high levels of residency meant that fine-scale movements were difficult to detect due to the acoustic receiver deployment configuration (i.e. receivers moored one kilometer apart). The influence of environmental variables on the movement of individuals, modelled with general linear mixed models (GLMMs), revealed that the effects of river inflow and water temperature were greatest. Increased river inflow caused individuals to use larger portions of the estuary. Increased water temperature, particularly river temperature, caused individuals to shift their distributions downstream (towards the mouth of the estuary). This study highlighted the importance of estuarine nursery habitats to R. holubi, suggesting that a loss or reduction of healthy estuarine habitats may lead to significant declines in the abundance of this species. Furthermore, extreme resident behaviour suggests that no-take area closures (estuarine protected areas) would be an effective management strategy for this important fishery species.
- Full Text:
The effect of kelp supplementation in formulated feed on the production performance and gut microbiota of South African abalone (Haliotis midae)
- Authors: Nel, Aldi
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/899 , vital:20001
- Description: Formulated feeds with a relatively low (< 5 % of dry mass) kelp (Ecklonia maxima) inclusion level are widely used on commercial abalone (Haliotis midae) farms in South Africa. Although the use of kelp, a major constituent of the natural diet of H. midae, as a dietary supplement is considered to enhance abalone growth and feed utilisation, there are no published studies which quantify the effects of kelp inclusion in formulated feeds. Furthermore, the physiological mechanisms by which kelp supplementation may positively influence abalone digestive physiology and growth are largely unknown. As the kelp supplement is comprised mostly of soluble fibres and abalone gut bacteria associated with macroalgae (and its fibrous polysaccharides) are known to play a key role in digestion, it was hypothesised that the kelp supplement influences the gut-bacterial community profiles of cultured abalone through prebiotic and other metabolic effects. The present thesis thus examined the effect of kelp supplementation on the performance of abalone (Haliotis midae) fed formulated feeds and explored the influence of a kelp supplement on the abalone gut microbiota and its function in the gastrointestinal tract. The key hypotheses of the study were that kelp supplementation in formulated feed: 1) enhances abalone growth; 2) causes a shift in abalone gut-bacterial community composition through a prebiotic-like effect; 3) may induce changes in crop morphology as a result of potential bacterial-associated increases in volatile short-chain fatty acids, and 4) alters digestive enzyme activities in the abalone gut through changes in bacterial-derived (exogenous) digestive enzymes. The growth-promoting efficacy of low-level kelp supplementation was tested by feeding isonitrogenous and isoenergetic experimental feeds containing 0.00 – 3.54 % kelp (dry mass) to sub-adult abalone (~43 mm shell length) for eight months under commercial farm conditions. The growth trial established that kelp supplementation (0.44 – 3.54 % of dry mass) promoted faster growth and improved feed conversion and protein efficiency ratios in cultured abalone compared to abalone fed the non-supplemented control diet, while there were no significant differences in growth for abalone fed the different kelp-supplemented diets (0.44, 0.88, 1.76 and 3.54 % of dry mass). Feed conversion and protein efficiency ratios displayed significant correlations with kelp level in the range of 0.00 – 3.54 % dry mass, and it is therefore recommended that kelp be included in the formulated feeds of cultured South African abalone at a rate of up to 3.54 % of dry mass. A kelp-supplemented (0.88 % dry weight inclusion) feed was fed to abalone under farm conditions to compare gut physiological parameters (crop morphology, digestive enzyme activities and the gut microbiota) in abalone against that of abalone fed an isonitrogenous and isoenergetic non-supplemented control feed. To establish if the observed higher abalone growth rates were related to improved gastrointestinal tract epithelium activity and integrity, as reflected by epithelial cell growth in response to potential changes in bacterial-derived short-chain fatty acid production, crop epithelial morphology was compared between abalone fed the kelp-supplemented and control feeds. Kelp supplementation did not induce any observable changes in crop epithelial cell height for farm-reared sub-adult abalone fed the experimental diets on-farm for seven weeks. This was attributed to the similar macronutrient compositions of kelp-supplemented and control diets and/ or the common diet history of experimental abalone from weaning to the initiation of the experiment. Digestive enzyme activity was compared between abalone fed a kelp-supplemented and a control feed during an on-farm feeding trial with sub-adult abalone. Gut samples were collected after seven weeks and colorimetric enzyme assays were performed for the polysaccharide-degrading enzymes amylase, alginate lyase, laminarinase and fucoidanase, and for acid protease, trypsin and chymotrypsin activity. Amylase and alginate lyase activities were relatively high, compared to the other enzymes. Polysaccharidase and acid protease activity levels did not differ significantly between abalone fed kelp-supplemented and control feeds, but a greater variability in enzyme activity levels was observed in abalone fed the control diet. It was hypothesised that this might be due to the kelp supplement promoting a more stable and less opportunistic gut-bacterial community than the control diet. Pooled gut samples of abalone fed the kelp-supplemented diet were used for proteomic analyses to identify the composition of enzyme proteins of both endogenous and exogenous origin in the abalone digestive system. The key polysaccharidases and proteases in the gut samples of kelp-supplemented formulated feed-fed abalone were all of abalone origin, whereas the bacterial enzymes were of the types that form part of intermediate reactions in metabolic pathways. The results suggested that bacterial enzymes play a different role to abalone endogenous enzymes in the digestion of formulated feed. While abalone enzymes appear to be the main degraders of carbohydrate and protein macromolecules, the profile of exogenous enzymes suggests that they perform bioconversions of smaller organic compounds. The profiles of gut-bacterial communities of farm-reared sub-adult abalone fed kelpsupplemented and control feeds on-farm for seven weeks were analysed with metagenomic pyrosequencing and DGGE analyses, using 16S rDNA-targeted amplified DNA. The results indicated a shift in gut-bacterial composition with a higher abundance of Mollicutes in abalone fed kelp-supplemented feed compared to those fed the control feed. DGGE band patterns displayed a greater within-group similarity in gut bacteria for abalone fed the kelpsupplemented diet and the presence of unique and variable bands for bacteria in the guts of abalone fed the control diet. It was concluded that when cultured abalone are fed kelpsupplemented formulated feeds, more stable gut bacterial communities are present compared to a more opportunistic gut-bacterial community in abalone fed non-supplemented feeds, and that the observed increase in Mollicutes could reflect the restoration of the abalone gut microbiota to a more natural state. The novel application of proteomics to abalone nutrition in the present study demonstrated that gut-bacterial enzymes may form part of many different metabolic pathways and suggests that the metabolism of the gut microbiota serves as an extension of the abalone’s digestive metabolism. Future studies should quantify the contribution of commensal gut-bacteria to cultured abalone nutrition by employing metabolomic studies to characterize the utilisation of bacterial-derived metabolites by the abalone host.
- Full Text:
- Authors: Nel, Aldi
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/899 , vital:20001
- Description: Formulated feeds with a relatively low (< 5 % of dry mass) kelp (Ecklonia maxima) inclusion level are widely used on commercial abalone (Haliotis midae) farms in South Africa. Although the use of kelp, a major constituent of the natural diet of H. midae, as a dietary supplement is considered to enhance abalone growth and feed utilisation, there are no published studies which quantify the effects of kelp inclusion in formulated feeds. Furthermore, the physiological mechanisms by which kelp supplementation may positively influence abalone digestive physiology and growth are largely unknown. As the kelp supplement is comprised mostly of soluble fibres and abalone gut bacteria associated with macroalgae (and its fibrous polysaccharides) are known to play a key role in digestion, it was hypothesised that the kelp supplement influences the gut-bacterial community profiles of cultured abalone through prebiotic and other metabolic effects. The present thesis thus examined the effect of kelp supplementation on the performance of abalone (Haliotis midae) fed formulated feeds and explored the influence of a kelp supplement on the abalone gut microbiota and its function in the gastrointestinal tract. The key hypotheses of the study were that kelp supplementation in formulated feed: 1) enhances abalone growth; 2) causes a shift in abalone gut-bacterial community composition through a prebiotic-like effect; 3) may induce changes in crop morphology as a result of potential bacterial-associated increases in volatile short-chain fatty acids, and 4) alters digestive enzyme activities in the abalone gut through changes in bacterial-derived (exogenous) digestive enzymes. The growth-promoting efficacy of low-level kelp supplementation was tested by feeding isonitrogenous and isoenergetic experimental feeds containing 0.00 – 3.54 % kelp (dry mass) to sub-adult abalone (~43 mm shell length) for eight months under commercial farm conditions. The growth trial established that kelp supplementation (0.44 – 3.54 % of dry mass) promoted faster growth and improved feed conversion and protein efficiency ratios in cultured abalone compared to abalone fed the non-supplemented control diet, while there were no significant differences in growth for abalone fed the different kelp-supplemented diets (0.44, 0.88, 1.76 and 3.54 % of dry mass). Feed conversion and protein efficiency ratios displayed significant correlations with kelp level in the range of 0.00 – 3.54 % dry mass, and it is therefore recommended that kelp be included in the formulated feeds of cultured South African abalone at a rate of up to 3.54 % of dry mass. A kelp-supplemented (0.88 % dry weight inclusion) feed was fed to abalone under farm conditions to compare gut physiological parameters (crop morphology, digestive enzyme activities and the gut microbiota) in abalone against that of abalone fed an isonitrogenous and isoenergetic non-supplemented control feed. To establish if the observed higher abalone growth rates were related to improved gastrointestinal tract epithelium activity and integrity, as reflected by epithelial cell growth in response to potential changes in bacterial-derived short-chain fatty acid production, crop epithelial morphology was compared between abalone fed the kelp-supplemented and control feeds. Kelp supplementation did not induce any observable changes in crop epithelial cell height for farm-reared sub-adult abalone fed the experimental diets on-farm for seven weeks. This was attributed to the similar macronutrient compositions of kelp-supplemented and control diets and/ or the common diet history of experimental abalone from weaning to the initiation of the experiment. Digestive enzyme activity was compared between abalone fed a kelp-supplemented and a control feed during an on-farm feeding trial with sub-adult abalone. Gut samples were collected after seven weeks and colorimetric enzyme assays were performed for the polysaccharide-degrading enzymes amylase, alginate lyase, laminarinase and fucoidanase, and for acid protease, trypsin and chymotrypsin activity. Amylase and alginate lyase activities were relatively high, compared to the other enzymes. Polysaccharidase and acid protease activity levels did not differ significantly between abalone fed kelp-supplemented and control feeds, but a greater variability in enzyme activity levels was observed in abalone fed the control diet. It was hypothesised that this might be due to the kelp supplement promoting a more stable and less opportunistic gut-bacterial community than the control diet. Pooled gut samples of abalone fed the kelp-supplemented diet were used for proteomic analyses to identify the composition of enzyme proteins of both endogenous and exogenous origin in the abalone digestive system. The key polysaccharidases and proteases in the gut samples of kelp-supplemented formulated feed-fed abalone were all of abalone origin, whereas the bacterial enzymes were of the types that form part of intermediate reactions in metabolic pathways. The results suggested that bacterial enzymes play a different role to abalone endogenous enzymes in the digestion of formulated feed. While abalone enzymes appear to be the main degraders of carbohydrate and protein macromolecules, the profile of exogenous enzymes suggests that they perform bioconversions of smaller organic compounds. The profiles of gut-bacterial communities of farm-reared sub-adult abalone fed kelpsupplemented and control feeds on-farm for seven weeks were analysed with metagenomic pyrosequencing and DGGE analyses, using 16S rDNA-targeted amplified DNA. The results indicated a shift in gut-bacterial composition with a higher abundance of Mollicutes in abalone fed kelp-supplemented feed compared to those fed the control feed. DGGE band patterns displayed a greater within-group similarity in gut bacteria for abalone fed the kelpsupplemented diet and the presence of unique and variable bands for bacteria in the guts of abalone fed the control diet. It was concluded that when cultured abalone are fed kelpsupplemented formulated feeds, more stable gut bacterial communities are present compared to a more opportunistic gut-bacterial community in abalone fed non-supplemented feeds, and that the observed increase in Mollicutes could reflect the restoration of the abalone gut microbiota to a more natural state. The novel application of proteomics to abalone nutrition in the present study demonstrated that gut-bacterial enzymes may form part of many different metabolic pathways and suggests that the metabolism of the gut microbiota serves as an extension of the abalone’s digestive metabolism. Future studies should quantify the contribution of commensal gut-bacteria to cultured abalone nutrition by employing metabolomic studies to characterize the utilisation of bacterial-derived metabolites by the abalone host.
- Full Text:
The trophic and spatial ecology of juvenile porcupine rays Urogymnus asperrimus at the remote St. Joseph Atoll
- Authors: Elston, Chantel
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/965 , vital:20007
- Description: Little information exists for the widely occurring but rare porcupine ray Urogymnus asperrimus. This is a concern given that it is a vulnerable species and likely plays an important ecological role in tropical atoll ecosystems. The aims of this thesis were to investigate the trophic and spatial ecology of juvenile porcupine rays within the St. Joseph Atoll, which is hypothesized to be functioning as a nursery for this species. Specific objectives were to determine i) the dietary composition and resource selectivity displayed by juvenile porcupine rays, ii) residency to the atoll, space use, and seasonality in movements, and iii) whether environmental factors affect short-term movements. Gastric lavage was used to collect stomach contents from 55 juveniles and sediment samples were collected. Thirteen juveniles were implanted with acoustic transmitters and monitored for a year by an array of 88 acoustic receivers situated in and around the St. Joseph Atoll. Porcupine rays appeared to be generalist and opportunistic feeders, foraging predominantly on annelids with the highest environmental availability. Polychaetes of the family Capitellidae were the most important prey item (Index of Importance = 35%). Rays only fed on deep infaunal prey, likely because of their foraging behaviour, suggesting they may influence this community. There was a size-related shift in the crustacean families consumed. The tagged rays displayed high residency to the atoll (mean residency index of 64%) and restricted movements, with small core use and activity space areas (mean of 0.5km² and 3km² respectively) and the majority of detections were recorded within 1km of their tagging locations. The rays favoured the sand ats where 88% of detections occurred. Transient use of the lagoon and fringe reef peaked in the north-west monsoon season, indicating a seasonal usage of these habitats. The effects of temperature and water depth on movements were manifested as diel and tidal cyclical patterns in presence. Evidence illustrates that the St. Joseph Atoll constitutes an important nursery for this species, which has been declared a Marine Protected Area. A major determinant behind the dependence of this nursery habitat is related to predator avoidance. Thermoregulatory behaviours were identified, suggesting that this species is vulnerable to climate change.
- Full Text:
- Authors: Elston, Chantel
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/965 , vital:20007
- Description: Little information exists for the widely occurring but rare porcupine ray Urogymnus asperrimus. This is a concern given that it is a vulnerable species and likely plays an important ecological role in tropical atoll ecosystems. The aims of this thesis were to investigate the trophic and spatial ecology of juvenile porcupine rays within the St. Joseph Atoll, which is hypothesized to be functioning as a nursery for this species. Specific objectives were to determine i) the dietary composition and resource selectivity displayed by juvenile porcupine rays, ii) residency to the atoll, space use, and seasonality in movements, and iii) whether environmental factors affect short-term movements. Gastric lavage was used to collect stomach contents from 55 juveniles and sediment samples were collected. Thirteen juveniles were implanted with acoustic transmitters and monitored for a year by an array of 88 acoustic receivers situated in and around the St. Joseph Atoll. Porcupine rays appeared to be generalist and opportunistic feeders, foraging predominantly on annelids with the highest environmental availability. Polychaetes of the family Capitellidae were the most important prey item (Index of Importance = 35%). Rays only fed on deep infaunal prey, likely because of their foraging behaviour, suggesting they may influence this community. There was a size-related shift in the crustacean families consumed. The tagged rays displayed high residency to the atoll (mean residency index of 64%) and restricted movements, with small core use and activity space areas (mean of 0.5km² and 3km² respectively) and the majority of detections were recorded within 1km of their tagging locations. The rays favoured the sand ats where 88% of detections occurred. Transient use of the lagoon and fringe reef peaked in the north-west monsoon season, indicating a seasonal usage of these habitats. The effects of temperature and water depth on movements were manifested as diel and tidal cyclical patterns in presence. Evidence illustrates that the St. Joseph Atoll constitutes an important nursery for this species, which has been declared a Marine Protected Area. A major determinant behind the dependence of this nursery habitat is related to predator avoidance. Thermoregulatory behaviours were identified, suggesting that this species is vulnerable to climate change.
- Full Text:
The use of treated brewery effluent as a water and nutrient source in crop irrigation
- Authors: Taylor, Richard Peter
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5390 , http://hdl.handle.net/10962/d1021265
- Description: Brewery effluent (BE) needs to be treated before it can be released into the environment, reused or used in down-stream activities. Current technologies used to address this concern at the experimental wastewater treatment plant at Ibahyi Brewery (SAB Ltd) include anaerobic digestion (AD), primary facultative ponds (PFP), high rate algal ponds (HRAP) and constructed wetlands (CW). The aim of this work was to determine if BE treated in these systems might be suitable for crop irrigation. A test crop, cabbage (Brassica oleracea cv. Star 3301), grew best on post-AD and post-PFP BE compared to those irrigated with post-HRAP or post-CW effluent. However, the yield was 13% lower than cabbage plants irrigated with a commercial nutrient solution and fresh water. The relatively high conductivity (3019.05 ± 48.72 μs/cm2) of BE may be the main factor reducing the cabbage yields. Post-HRAP and post-CW BE were the least suitable for irrigated crop production due to the higher conductivity and lower nutrient content of these treated effluents. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium content and sodium adsorption ratio (3919 ± 94.77 mg/kg & 8.18 ± 0.17) than soil irrigated with a commercial nutrient solution (920.58 ± 27.46 mg/kg & 2.20 ± 0.05; p<0.05). However, this was not accompanied by a deterioration in the soil’s hydro-physical properties, nor a change in the metabolic community structure of the soil (p>0.05). After prolonged irrigation with treated BE, sodium is likely to build up in the soil and this can be expected to be accompanied by a deterioration in the soil physical structure. However, crops species such as millet (Echinochloa esculenta), lucerne (Medicago sativa) and saltbush (Atriplex nummularia) reduced the build-up of sodium in the soil. The results suggest that sodium was mainly removed from the soil through plant-assisted leaching. Of the crops grown, lucerne showed the most promise because it improved the soil physical properties, is able to grow well in alkaline environments, is a popular fodder crop and can be harvested multiple times from a single stand. Brewery effluent is more suitable for soil production systems than hydroponic production systems because the soil was able to act as a buffer against the high pH of post-AD BE, whereas in a hydroponics systems the high pH reduced the availability of key minerals to plants. In conclusion brewery effluent contains sufficient plants nutrients to support the growth of cabbages, saltbush, lucerne and millet. However the sodium content of BE is a concern as it accumulates in the soil, and in the long-term it may lead to soil degradation. It is suggested that the brewery change the pH neutralising treatment of BE from sodium hydroxide to potassium hydroxide, or dolomitic lime (calcium and magnesium carbonate) because this would reduce the introduction of sodium into the system, and would increase the suitability of BE for crop production, given potassium and calcium are plant nutrients. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, create job opportunities with the potential of improving food security in the local community.
- Full Text:
- Authors: Taylor, Richard Peter
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5390 , http://hdl.handle.net/10962/d1021265
- Description: Brewery effluent (BE) needs to be treated before it can be released into the environment, reused or used in down-stream activities. Current technologies used to address this concern at the experimental wastewater treatment plant at Ibahyi Brewery (SAB Ltd) include anaerobic digestion (AD), primary facultative ponds (PFP), high rate algal ponds (HRAP) and constructed wetlands (CW). The aim of this work was to determine if BE treated in these systems might be suitable for crop irrigation. A test crop, cabbage (Brassica oleracea cv. Star 3301), grew best on post-AD and post-PFP BE compared to those irrigated with post-HRAP or post-CW effluent. However, the yield was 13% lower than cabbage plants irrigated with a commercial nutrient solution and fresh water. The relatively high conductivity (3019.05 ± 48.72 μs/cm2) of BE may be the main factor reducing the cabbage yields. Post-HRAP and post-CW BE were the least suitable for irrigated crop production due to the higher conductivity and lower nutrient content of these treated effluents. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium content and sodium adsorption ratio (3919 ± 94.77 mg/kg & 8.18 ± 0.17) than soil irrigated with a commercial nutrient solution (920.58 ± 27.46 mg/kg & 2.20 ± 0.05; p<0.05). However, this was not accompanied by a deterioration in the soil’s hydro-physical properties, nor a change in the metabolic community structure of the soil (p>0.05). After prolonged irrigation with treated BE, sodium is likely to build up in the soil and this can be expected to be accompanied by a deterioration in the soil physical structure. However, crops species such as millet (Echinochloa esculenta), lucerne (Medicago sativa) and saltbush (Atriplex nummularia) reduced the build-up of sodium in the soil. The results suggest that sodium was mainly removed from the soil through plant-assisted leaching. Of the crops grown, lucerne showed the most promise because it improved the soil physical properties, is able to grow well in alkaline environments, is a popular fodder crop and can be harvested multiple times from a single stand. Brewery effluent is more suitable for soil production systems than hydroponic production systems because the soil was able to act as a buffer against the high pH of post-AD BE, whereas in a hydroponics systems the high pH reduced the availability of key minerals to plants. In conclusion brewery effluent contains sufficient plants nutrients to support the growth of cabbages, saltbush, lucerne and millet. However the sodium content of BE is a concern as it accumulates in the soil, and in the long-term it may lead to soil degradation. It is suggested that the brewery change the pH neutralising treatment of BE from sodium hydroxide to potassium hydroxide, or dolomitic lime (calcium and magnesium carbonate) because this would reduce the introduction of sodium into the system, and would increase the suitability of BE for crop production, given potassium and calcium are plant nutrients. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, create job opportunities with the potential of improving food security in the local community.
- Full Text:
Towards an alternative spatial-based management approach for estuarine fisheries in South Africa, with a case study from the Sundays Estuary
- Authors: Kramer, Rachel
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/1007 , vital:20012
- Description: Estuaries are productive habitats and biologically important ecosystems which serve as juvenile nursery areas and feeding grounds for adults from a host of fish species. They are, however, threatened habitats, increasingly exposed to human disturbance and exploitation. The stocks of several South African estuary-dependent linefish species are now considered as either overexploited or collapsed. It is clear that their dependence on estuaries would warrant the inclusion of these ecosystems into marine reserve planning exercises. Since traditional management strategies (e.g. bag and size limit restrictions) have proven ineffective for estuarine fisheries, there is a need for alternative management measures, such as spatial and temporal restrictions, to ensure increased survival of juveniles and recovery of adult breeding populations. This thesis explored the potential for an ecosystem-based approach through the application of a rapid sustainability assessment technique, and a spatial-based management approach for an important fishery species, using conservation planning software. The Sundays Estuary, Eastern Cape, South Africa falls within the footprint of the Addo Elephant National Park, with a proposed expansion to include a marine protected area (MPA). However the estuaries resources were not considered during the planning of the proposed MPA. This study conducted an indicator-based sustainability assessment based on the principles of sustainable development. The results showed that present levels of exploitation, due to non-compliance and a lack of law enforcement are unsustainable. The sustainability of the Sundays Estuary had a low overall sustainability score of only 23.8%. With limited enforcement of estuarine fisheries regulations in South Africa, alternative management measures such as spatial regulations may provide a viable option forward. The sustainability of fishery resources depends on the comprehensive understanding of the fishery resource. Acoustic telemetry is a technique that has been widely adopted to infer habitat and area use patterns of fish species. The second component of this study made use of high resolution telemetry data collected on juvenile dusky kob Argyrosomus japonicus movements within the Sundays Estuary to conduct a scenario-based approach using Marxan conservation planning software. The best solution given by Marxan, in the form of a protected area for the conservation of juvenile A. japonicus in the Sundays Estuary was identified in the middle (starting 7km from the mouth) to the upper reaches (approximately 16km from the mouth) of the estuary, ultimately providing protection to tagged individuals for 61% of their time in the estuary. Although Marxan presented a best solution, the Sundays Estuary’s small size and shape, and minimal features used, was too simplistic to be included into a Marxan analysis. However, new methods and tools to analyse and plan spatial-based management options at this scale are currently being developed. Using the Sundays Estuary as a case study, a decision tree was then developed as a protocol to assist management address the challenges of effective estuarine management depending on the unique biological and socio-economic characteristics of individual estuaries in South Africa.
- Full Text:
- Authors: Kramer, Rachel
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/1007 , vital:20012
- Description: Estuaries are productive habitats and biologically important ecosystems which serve as juvenile nursery areas and feeding grounds for adults from a host of fish species. They are, however, threatened habitats, increasingly exposed to human disturbance and exploitation. The stocks of several South African estuary-dependent linefish species are now considered as either overexploited or collapsed. It is clear that their dependence on estuaries would warrant the inclusion of these ecosystems into marine reserve planning exercises. Since traditional management strategies (e.g. bag and size limit restrictions) have proven ineffective for estuarine fisheries, there is a need for alternative management measures, such as spatial and temporal restrictions, to ensure increased survival of juveniles and recovery of adult breeding populations. This thesis explored the potential for an ecosystem-based approach through the application of a rapid sustainability assessment technique, and a spatial-based management approach for an important fishery species, using conservation planning software. The Sundays Estuary, Eastern Cape, South Africa falls within the footprint of the Addo Elephant National Park, with a proposed expansion to include a marine protected area (MPA). However the estuaries resources were not considered during the planning of the proposed MPA. This study conducted an indicator-based sustainability assessment based on the principles of sustainable development. The results showed that present levels of exploitation, due to non-compliance and a lack of law enforcement are unsustainable. The sustainability of the Sundays Estuary had a low overall sustainability score of only 23.8%. With limited enforcement of estuarine fisheries regulations in South Africa, alternative management measures such as spatial regulations may provide a viable option forward. The sustainability of fishery resources depends on the comprehensive understanding of the fishery resource. Acoustic telemetry is a technique that has been widely adopted to infer habitat and area use patterns of fish species. The second component of this study made use of high resolution telemetry data collected on juvenile dusky kob Argyrosomus japonicus movements within the Sundays Estuary to conduct a scenario-based approach using Marxan conservation planning software. The best solution given by Marxan, in the form of a protected area for the conservation of juvenile A. japonicus in the Sundays Estuary was identified in the middle (starting 7km from the mouth) to the upper reaches (approximately 16km from the mouth) of the estuary, ultimately providing protection to tagged individuals for 61% of their time in the estuary. Although Marxan presented a best solution, the Sundays Estuary’s small size and shape, and minimal features used, was too simplistic to be included into a Marxan analysis. However, new methods and tools to analyse and plan spatial-based management options at this scale are currently being developed. Using the Sundays Estuary as a case study, a decision tree was then developed as a protocol to assist management address the challenges of effective estuarine management depending on the unique biological and socio-economic characteristics of individual estuaries in South Africa.
- Full Text:
Towards determining the dietary lysine requirement in the South African abalone, Haliotis midae
- Authors: Lloyd, Kyle Everett
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/1024 , vital:20014
- Description: Animals generally do not have a requirement for protein, but instead have a requirement for specific essential amino acids (EAAs) and non-essential amino acids (NEAAs). The NEAAs are those that can be synthesised by the animal, however, EAAs cannot be synthesised and must therefore be supplied as part of the diet. When these amino acids (AAs) are supplied in the correct ratios and with the correct level of digestible energy, nutritionists can maximise somatic growth from proteins. This has resulted in increased research into the use of crystalline AAs as a tool in feed formulation research in order to quantify the AA requirements in aquaculture species, and allow for alternative protein sources (other than fishmeal) to be utilised. In common with other water soluble nutrients, leaching of crystalline AAs from diets prior to ingestion is of concern in an aquatic environment. Microencapsulation techniques have been successfully employed to restrict micronutrient leaching, and improve ingestion rates. In this research, LysiPEARL™ (Kemin®) was used as a means to determine the lysine requirement in Haliotis. midae. This encapsulated lysine product is used in the dairy cattle industry as an effective source of rumen bypass for intestinal release of lysine. It has previously been proposed that crystalline AAs are not suitable for AA studies in H. midae due to the slow feeding rates of the species as well as the solubility of these AAs. However, 90.00 % of supplemented lysine was maintained in this study after a six hour period of leaching, showing that if effective microencapsulation techniques are used, it is possible to use crystalline amino acids to supplement protein bound lysine in abalone feeds. Six isoenergetic (15.90 MJ/kg), isolipidic (6.00 %) and isonitrogenous (29.00 %) diets enriched with 5.52, 6.40, 7.28, 8.14, 9.00 and 9.86 % lysine (as a % of protein) were fed to triplicate groups of 20 H. midae (20.41 ± 1.95 mm SL 1.51 ± 0.44 g w.wt) for 90 days. Wet weight and shell length measurements were taken every 30 days and specific growth rate (SGR) (% body weight.day-1), feed conversion ratio (FCR), protein efficiency ratio (PER), feed consumption (% body weight.day-1) and condition factor were calculated for each dietary treatment. Linear regression showed that FCR increased as dietary lysine increased (Regression analysis, p=0.031), and that PER reduced as dietary lysine increased (Regression analysis, p=0.026). Feed consumption also increased as dietary lysine increased (Regression analysis, p<0.001). The inclusion of lysine at 7.28 % of the total protein in the diet resulted in significantly superior SGR (0.57±0.01 % body weight.day-1) to that of 5.52 % (0.42±0.05 % body weight.day-1), FCR (1.51±0.05) to that of 8.14 % (1.99±0.21) and PER (2.45±0.07) to that of 8.14 % (1.99±0.18; ANOVA, p<0.05). There was a significant difference found in feed consumption (% body wt.d-1), with consumption increasing significantly between the first three dietary treatments and the last three dietary treatments (ANOVA, p<0.001). There was no significant improvement in SGR when dietary lysine increased above 7.28 % of the dietary protein in the diet, indicating that dietary lysine requirement was being met at 7.28 %, after which excess lysine promoted no growth response. The diet producing the best SGR, PER and FCR in this study was diet 3 which had a measured lysine content of 6.90 %. The results of the present study suggest that the lysine requirement in H. midae is in the range of 6.00 - 7.00 % of dietary protein. From these data amino acid ratios were used to estimate optimum inclusion levels of other essential amino acids. However, lysine availability in LysiPEARL™ may have resulted in over estimations due to the lipid encapsulation technique used, and haliotids limited ability to efficiently digest lipids. For this reason EAA requirements were suggested based on three different hypothetical scenarios of lysine availability from LysiPEARL™.
- Full Text:
- Authors: Lloyd, Kyle Everett
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/1024 , vital:20014
- Description: Animals generally do not have a requirement for protein, but instead have a requirement for specific essential amino acids (EAAs) and non-essential amino acids (NEAAs). The NEAAs are those that can be synthesised by the animal, however, EAAs cannot be synthesised and must therefore be supplied as part of the diet. When these amino acids (AAs) are supplied in the correct ratios and with the correct level of digestible energy, nutritionists can maximise somatic growth from proteins. This has resulted in increased research into the use of crystalline AAs as a tool in feed formulation research in order to quantify the AA requirements in aquaculture species, and allow for alternative protein sources (other than fishmeal) to be utilised. In common with other water soluble nutrients, leaching of crystalline AAs from diets prior to ingestion is of concern in an aquatic environment. Microencapsulation techniques have been successfully employed to restrict micronutrient leaching, and improve ingestion rates. In this research, LysiPEARL™ (Kemin®) was used as a means to determine the lysine requirement in Haliotis. midae. This encapsulated lysine product is used in the dairy cattle industry as an effective source of rumen bypass for intestinal release of lysine. It has previously been proposed that crystalline AAs are not suitable for AA studies in H. midae due to the slow feeding rates of the species as well as the solubility of these AAs. However, 90.00 % of supplemented lysine was maintained in this study after a six hour period of leaching, showing that if effective microencapsulation techniques are used, it is possible to use crystalline amino acids to supplement protein bound lysine in abalone feeds. Six isoenergetic (15.90 MJ/kg), isolipidic (6.00 %) and isonitrogenous (29.00 %) diets enriched with 5.52, 6.40, 7.28, 8.14, 9.00 and 9.86 % lysine (as a % of protein) were fed to triplicate groups of 20 H. midae (20.41 ± 1.95 mm SL 1.51 ± 0.44 g w.wt) for 90 days. Wet weight and shell length measurements were taken every 30 days and specific growth rate (SGR) (% body weight.day-1), feed conversion ratio (FCR), protein efficiency ratio (PER), feed consumption (% body weight.day-1) and condition factor were calculated for each dietary treatment. Linear regression showed that FCR increased as dietary lysine increased (Regression analysis, p=0.031), and that PER reduced as dietary lysine increased (Regression analysis, p=0.026). Feed consumption also increased as dietary lysine increased (Regression analysis, p<0.001). The inclusion of lysine at 7.28 % of the total protein in the diet resulted in significantly superior SGR (0.57±0.01 % body weight.day-1) to that of 5.52 % (0.42±0.05 % body weight.day-1), FCR (1.51±0.05) to that of 8.14 % (1.99±0.21) and PER (2.45±0.07) to that of 8.14 % (1.99±0.18; ANOVA, p<0.05). There was a significant difference found in feed consumption (% body wt.d-1), with consumption increasing significantly between the first three dietary treatments and the last three dietary treatments (ANOVA, p<0.001). There was no significant improvement in SGR when dietary lysine increased above 7.28 % of the dietary protein in the diet, indicating that dietary lysine requirement was being met at 7.28 %, after which excess lysine promoted no growth response. The diet producing the best SGR, PER and FCR in this study was diet 3 which had a measured lysine content of 6.90 %. The results of the present study suggest that the lysine requirement in H. midae is in the range of 6.00 - 7.00 % of dietary protein. From these data amino acid ratios were used to estimate optimum inclusion levels of other essential amino acids. However, lysine availability in LysiPEARL™ may have resulted in over estimations due to the lipid encapsulation technique used, and haliotids limited ability to efficiently digest lipids. For this reason EAA requirements were suggested based on three different hypothetical scenarios of lysine availability from LysiPEARL™.
- Full Text:
Short-term changes to the life history of shad, Pomatomus saltatrix (Perciformes: Pomatomidae), in Southern Angola
- Authors: Bealey, Roy Steven John
- Date: 2015
- Subjects: Shad -- Angola , Bluefish -- Angola , Bluefish -- Climatic factors -- Angola , Bluefish -- Effect of temperature on -- Angola , Bluefish -- Effect of global warming on -- Angola , Bluefish -- Effect of fishing on -- Angola , Bluefish -- Life cycles , Pomatomidae -- Angola , Fishery management -- Angola , Climatic changes -- Angola
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5379 , http://hdl.handle.net/10962/d1017211
- Description: A general lack of biological information is hampering the effective management of Angola’s fisheries. While this lack of information is largely a result of the country’s extended civil war that ended in 2002, the subsequent rapid expansion of fisheries is most likely impacting fish abundance and influencing the biology of this regions fishes. Besides the influence of fisheries, the southern Angolan coastal region is considered to be a climate change “hotspot” due to rapidly (>0.8°C/decade) increasing water temperatures. These changes are thought to drive further changes to the biology of fishes. It is therefore critical to provide baseline biological information and to identify the impacts of exploitation and warming on the biology of southern Angolan fishes. Pomatomus saltatrix is a warm-temperate marine fish species that forms an important component of fisheries throughout its broad distribution. P. saltatrix is a migratory predator that displays variable growth and maturity schedules. Typically it is heavily targeted in a range of coastal fisheries of Angola and is therefore an ideal candidate to study the biological impacts of exploitation and climate change. The aim of this study was to provide the first description of P. saltatrix biology in Angola and examine recent changes of the species biological parameters in an attempt to uncouple fishery driven from climate driven changes. Samples of P. saltatrix were collected monthly using standardised biological methods from June 2005 to December 2006 (period 1) and from June 2012 to February 2013 (period 2). The average (508mm – 1st period, 462mm – 2nd period) and maximum (760mm – 1st period, 746mm – 2nd period) size of P. saltatrix was smaller during the second period to suggest selective overharvesting of large individuals by developing fisheries. Angolan P. saltatrix grew very rapidly in their first year and thereafter, relatively slowly when compared to other populations globally. However, fish grew faster (ω = 103 – 1st period, ω = 124 – 2nd period), matured at a larger size (303mm - 1st period, 336mm - 2nd period) and younger age (0.83 years - 1st period, 0.67 years – 2nd period) during the second period. Peaks in reproductive activity remained similar (November) during both periods but a temperature anomaly appears to have influenced spawning during period 2. Sardinella aurita was the dominant prey during both periods but a greater dependence upon mugilids was observed during the second period. Although the changes in life history were not statistically significant, the faster growth observed during period two could be attributed to both increasing temperature and/or exploitation. Fishes generally grow faster, mature smaller and attain a smaller maximum size in warmer temperatures. Fisheries targeting small and large specimens of a species (as observed in this study) largely have the same impacts as ocean warming. With rapidly increasing water temperatures and exploitation rates, faster growth and earlier maturation of P. saltatrix populations will mitigate the impacts of exploitation in the short-term. However, the sustainability of Angola’s P. saltatrix stock is questionable as phenotypic adaptation will have a limited thermal scope and overexploitation will, like in all fisheries, negatively influence recruitment. Ultimately, strict monitoring, regulation and control will be necessary to ensure the sustainability of the P. saltatrix resource in Angola as it continues to face increasing anthropogenic and environmental pressures. Management guidelines and future research suggestions are therefore outlined with reference to the results of analyses conducted during this study.
- Full Text:
- Authors: Bealey, Roy Steven John
- Date: 2015
- Subjects: Shad -- Angola , Bluefish -- Angola , Bluefish -- Climatic factors -- Angola , Bluefish -- Effect of temperature on -- Angola , Bluefish -- Effect of global warming on -- Angola , Bluefish -- Effect of fishing on -- Angola , Bluefish -- Life cycles , Pomatomidae -- Angola , Fishery management -- Angola , Climatic changes -- Angola
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5379 , http://hdl.handle.net/10962/d1017211
- Description: A general lack of biological information is hampering the effective management of Angola’s fisheries. While this lack of information is largely a result of the country’s extended civil war that ended in 2002, the subsequent rapid expansion of fisheries is most likely impacting fish abundance and influencing the biology of this regions fishes. Besides the influence of fisheries, the southern Angolan coastal region is considered to be a climate change “hotspot” due to rapidly (>0.8°C/decade) increasing water temperatures. These changes are thought to drive further changes to the biology of fishes. It is therefore critical to provide baseline biological information and to identify the impacts of exploitation and warming on the biology of southern Angolan fishes. Pomatomus saltatrix is a warm-temperate marine fish species that forms an important component of fisheries throughout its broad distribution. P. saltatrix is a migratory predator that displays variable growth and maturity schedules. Typically it is heavily targeted in a range of coastal fisheries of Angola and is therefore an ideal candidate to study the biological impacts of exploitation and climate change. The aim of this study was to provide the first description of P. saltatrix biology in Angola and examine recent changes of the species biological parameters in an attempt to uncouple fishery driven from climate driven changes. Samples of P. saltatrix were collected monthly using standardised biological methods from June 2005 to December 2006 (period 1) and from June 2012 to February 2013 (period 2). The average (508mm – 1st period, 462mm – 2nd period) and maximum (760mm – 1st period, 746mm – 2nd period) size of P. saltatrix was smaller during the second period to suggest selective overharvesting of large individuals by developing fisheries. Angolan P. saltatrix grew very rapidly in their first year and thereafter, relatively slowly when compared to other populations globally. However, fish grew faster (ω = 103 – 1st period, ω = 124 – 2nd period), matured at a larger size (303mm - 1st period, 336mm - 2nd period) and younger age (0.83 years - 1st period, 0.67 years – 2nd period) during the second period. Peaks in reproductive activity remained similar (November) during both periods but a temperature anomaly appears to have influenced spawning during period 2. Sardinella aurita was the dominant prey during both periods but a greater dependence upon mugilids was observed during the second period. Although the changes in life history were not statistically significant, the faster growth observed during period two could be attributed to both increasing temperature and/or exploitation. Fishes generally grow faster, mature smaller and attain a smaller maximum size in warmer temperatures. Fisheries targeting small and large specimens of a species (as observed in this study) largely have the same impacts as ocean warming. With rapidly increasing water temperatures and exploitation rates, faster growth and earlier maturation of P. saltatrix populations will mitigate the impacts of exploitation in the short-term. However, the sustainability of Angola’s P. saltatrix stock is questionable as phenotypic adaptation will have a limited thermal scope and overexploitation will, like in all fisheries, negatively influence recruitment. Ultimately, strict monitoring, regulation and control will be necessary to ensure the sustainability of the P. saltatrix resource in Angola as it continues to face increasing anthropogenic and environmental pressures. Management guidelines and future research suggestions are therefore outlined with reference to the results of analyses conducted during this study.
- Full Text:
The associative behaviour of silky sharks, Carcharhinus falciformis, with floating objects in the open ocean
- Authors: Filmalter, John David
- Date: 2015
- Subjects: Silky shark , Silky shark -- Behavior , Silky shark -- Marking , Silky shark -- Food , Tuna fisheries -- Bycatches , Fish aggregation devices , Underwater acoustic telemetry , Fish tagging
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5381 , http://hdl.handle.net/10962/d1018177
- Description: The silky shark Carcharhinus falciformis forms the primary elasmobranch bycatch in tuna purse seine fisheries using fish aggregating devices (FADs) in all of the world’s tropical oceans. Its life-history traits of slow growth, late maturation and low fecundity make it vulnerable to over exploitation, as is apparent from historical bycatch trends. Very little is known about the associative behaviour of this species with floating objects, information which is essential in formulating effective mitigation and management measures. This study aims to address this knowledge gap through the use of various electronic tagging techniques in conjunction with dietary analysis. Dietary data were collected from 323 silky sharks incidentally caught at FADs. Approximately 40 percent of the diet consisted of prey associated with FADs while the remaining 60 percent were non-associated species of crustaceans, cephalopods and fishes. These results suggest that the associative behaviour is not primarily driven by trophic enhancement, but is likely a combination of predator avoidance, social interactions and feeding. Fine-scale behavioural data from silky sharks associated with drifting FADs were collected through the use of acoustic telemetry techniques. Acoustic tags were implanted into 38 silky sharks (69- 116 cm TL) at eight FADs. FADs were equipped with satellite linked acoustic receivers and abandoned to drift freely. Presence/absence and swimming depth data were telemetered via the Iridium satellite system. A total of 300 d of behavioural data were collected from 20 tagged individuals. Individuals remain associated with the same FAD for extended periods (min = 2.84 d, max = 30.60 d, mean = 15.69 d). Strong diel patterns were observed in both association and swimming depth. Typically individuals moved away from FADs after sunset and return later during the night, then remain closely associated until the following evening. Vertical behaviour also changed around sunset with sharks using fairly constant depths, within the upper 25 m, during the day and switching to rapid vertical movements during the night, with dives in excess of 250 m recoded. Broader scale movement behaviour was investigated using pop-up archival satellite tags (PSATs). Tags were deployed on 46 silky sharks (86-224.5 cm TL) for a total of 1495 d. Light data were used to calculate geolocation estimates and reconstruct the sharks’ trajectories. Movement patterns differed between animals and according to deployment duration. Several extensive horizontal movements were observed, with an average track length of 3240 km during an average tag deployment of 44.02 d. Horizontal movement patterns were found to correlate very closely with drift patterns of FADs. Consequently, it appears that the movement behaviour of juvenile silky sharks is strongly influenced by the movement of drifting FADs in this region. Ghost fishing of silky sharks through entanglement in FADs was also investigated using data derived from PSATs as well as underwater visual censuses. Thirteen per cent of the tagged sharks became entangled in FADs and entangled sharks were observed in 35 percent of the 51 FADs surveyed. Using this information in conjunction with estimated time that sharks remained entangled in the FAD (from depth data from PSATs), and scaling up according to estimates of FAD numbers, it was found that between 480 000 and 960 000 silky sharks are killed annually in this manner in the Indian Ocean. Subsequent management measures in this region prevent the deployment of FADs with netting that could lead to entanglement. Overall, floating objects appear to play a significant role in the juvenile life stages of silky sharks in this region. While their association with floating objects is clearly advantageous in an evolutionary sense, under current tuna fishery trends, this behaviour is certainly detrimental for the population.
- Full Text:
- Authors: Filmalter, John David
- Date: 2015
- Subjects: Silky shark , Silky shark -- Behavior , Silky shark -- Marking , Silky shark -- Food , Tuna fisheries -- Bycatches , Fish aggregation devices , Underwater acoustic telemetry , Fish tagging
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5381 , http://hdl.handle.net/10962/d1018177
- Description: The silky shark Carcharhinus falciformis forms the primary elasmobranch bycatch in tuna purse seine fisheries using fish aggregating devices (FADs) in all of the world’s tropical oceans. Its life-history traits of slow growth, late maturation and low fecundity make it vulnerable to over exploitation, as is apparent from historical bycatch trends. Very little is known about the associative behaviour of this species with floating objects, information which is essential in formulating effective mitigation and management measures. This study aims to address this knowledge gap through the use of various electronic tagging techniques in conjunction with dietary analysis. Dietary data were collected from 323 silky sharks incidentally caught at FADs. Approximately 40 percent of the diet consisted of prey associated with FADs while the remaining 60 percent were non-associated species of crustaceans, cephalopods and fishes. These results suggest that the associative behaviour is not primarily driven by trophic enhancement, but is likely a combination of predator avoidance, social interactions and feeding. Fine-scale behavioural data from silky sharks associated with drifting FADs were collected through the use of acoustic telemetry techniques. Acoustic tags were implanted into 38 silky sharks (69- 116 cm TL) at eight FADs. FADs were equipped with satellite linked acoustic receivers and abandoned to drift freely. Presence/absence and swimming depth data were telemetered via the Iridium satellite system. A total of 300 d of behavioural data were collected from 20 tagged individuals. Individuals remain associated with the same FAD for extended periods (min = 2.84 d, max = 30.60 d, mean = 15.69 d). Strong diel patterns were observed in both association and swimming depth. Typically individuals moved away from FADs after sunset and return later during the night, then remain closely associated until the following evening. Vertical behaviour also changed around sunset with sharks using fairly constant depths, within the upper 25 m, during the day and switching to rapid vertical movements during the night, with dives in excess of 250 m recoded. Broader scale movement behaviour was investigated using pop-up archival satellite tags (PSATs). Tags were deployed on 46 silky sharks (86-224.5 cm TL) for a total of 1495 d. Light data were used to calculate geolocation estimates and reconstruct the sharks’ trajectories. Movement patterns differed between animals and according to deployment duration. Several extensive horizontal movements were observed, with an average track length of 3240 km during an average tag deployment of 44.02 d. Horizontal movement patterns were found to correlate very closely with drift patterns of FADs. Consequently, it appears that the movement behaviour of juvenile silky sharks is strongly influenced by the movement of drifting FADs in this region. Ghost fishing of silky sharks through entanglement in FADs was also investigated using data derived from PSATs as well as underwater visual censuses. Thirteen per cent of the tagged sharks became entangled in FADs and entangled sharks were observed in 35 percent of the 51 FADs surveyed. Using this information in conjunction with estimated time that sharks remained entangled in the FAD (from depth data from PSATs), and scaling up according to estimates of FAD numbers, it was found that between 480 000 and 960 000 silky sharks are killed annually in this manner in the Indian Ocean. Subsequent management measures in this region prevent the deployment of FADs with netting that could lead to entanglement. Overall, floating objects appear to play a significant role in the juvenile life stages of silky sharks in this region. While their association with floating objects is clearly advantageous in an evolutionary sense, under current tuna fishery trends, this behaviour is certainly detrimental for the population.
- Full Text:
The effects of dietary soya and crystalline phytoestrogens on the growth, gonad development and histology of farmed abalone, Haliotis midae
- Wu, Yu
- Authors: Wu, Yu
- Date: 2015
- Subjects: Haliotis midae , Haliotis midae -- Feeding and feeds , Haliotis midae -- Growth , Haliotis midae -- Histology , Haliotis midae -- Effect of chemicals on , Soybean as feed , Phytoestrogens
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5380 , http://hdl.handle.net/10962/d1017225
- Description: The inclusion of soya as a dietary protein source in the formulated feed, Abfeed® S34 (Marifeed Pty (Ltd), Hermanus) for farmed abalone, Haliotis midae has resulted in larger gonads during reproductive seasons compared to the gonads of abalone fed kelp or diets that included fishmeal as the only main protein source. The aim of this study was to determine if the isoflavones present in the soya were responsible for this increase in gonad size and the subsequent effects on farmed abalone growth. Animals weighing between 40-50 g were fed one of seven isonitrogenous and isoenergetic diets containing either 0, 25, 50 or 100 percent of the soya component of the commercial feed (Abfeed® S34, Marifeed Pty (Ltd), Hermanus) from September 2013 to March 2014. An additional three diets were formulated to include crystalline isoflavone (ISO). These diets were identical to the 0 percent soya diet (i.e. the fishmeal only diet - FM), only ISO was included at the same rate that ISO occurred in the three soya diets. Data were analysed using a multiple forward stepwise regression analysis (MSR) to test the effects of ISO concentration, soya concentration, time, sex, time by concentration interaction and sex by concentration interaction on growth and gonad development and to identify those variables that most contributed to the model. The inclusion of crystalline ISO failed to promote larger gonads and had no effect on abalone growth, while growth and gonad development was dose dependent on soya inclusion rates with sex and time contributing to the models. Mean monthly weight gain in males correlated with increasing soya concentrations (c) (MSR, y = 3.24 + 0.002c, r2 = 0.23, p = 0.03), ranging from 3.11 ± 0.55 g abalone-1 month-1 to 4.43 ± 0.46 g abalone-1 month-1, while both male and female monthly length gain was not influenced by soya concentration with an overall mean of 1.62 ± 0.05 mm abalone-1 month-1 (MSR, p = 0.05 and p = 0.81, respectively). By December, the whole body mass, meat mass and visceral mass in both males and females decreased with increasing soya levels. However, by February, female whole body mass, meat mass and visceral mass positively correlated with soya levels. At the end of the study, male abalone fed FM with soya equivalent to the commercial feed had the highest whole body mass (69.00 ± 2.48 g abalone-1), meat mass (41.80 ± 1.12 g abalone-1), visceral mass (9.00 ± 2.47 g abalone-1) and gonad bulk index (42.70 ± 9.82 g abalone-1), while females were not influenced by soya concentrations with an overall whole body mass of 63.46 ± 0.79 g abalone-1. Weight loss was observed in all treatments between February and March, probably due to a spawning event. The moisture content in the meat was not influenced by treatment, however, visceral water loss was effected by both ISO and soya concentration with time and sex contributing to the model. The visceral water loss of females fed graded levels of soya decreased as a function of soya from December to March, and from December to February for males, whereas females fed ISO-enriched diets decreased as a function of ISO concentration (c) at the end of the study from 74.98 ± 0.88 to 73.10 ± 0.75 percent (MSR, y = 74.97 – 0.0025c, r2 = 0.20, p = 0.048). The inclusion of crystalline ISO had no significant effect on oogenesis in female farmed Haliotis midae, while the distribution of the predominant oocyte stage, stage 7 (second last stage prior to spawning) was dose-dependent in abalone fed increasing soya concentration (c) (MSR, y = 33.38 + 0.03c, r2 = 0.32, F(1, 18) = 8.52, p = 0.01). The increase in stage 7 oocytes in abalone fed FM with soya did not reduce the number of oocytes (44.96 ± 3.01 oocytes mm-2) present within the lumen, while the number of oocytes (o) in abalone fed the FM-only based diets decreased with increasing abundance of stage 7 oocytes (MSR, y = 58.28 – 0.48c, r2 = 0.38, F(1, 18) = 12.51, p = 0.002), possibly due to the increase in size of the oocytes with thicker jelly coats. This study provided evidence that crystalline isoflavone had no influence on abalone gonad development over five months, while soya had a dose-dependent effect on growth, gonad mass and oogenesis in farmed Haliotis midae. Formulated abalone feed could be manipulated at certain times of the year to obtain maximum growth. These implications and further studies were discussed.
- Full Text:
- Authors: Wu, Yu
- Date: 2015
- Subjects: Haliotis midae , Haliotis midae -- Feeding and feeds , Haliotis midae -- Growth , Haliotis midae -- Histology , Haliotis midae -- Effect of chemicals on , Soybean as feed , Phytoestrogens
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5380 , http://hdl.handle.net/10962/d1017225
- Description: The inclusion of soya as a dietary protein source in the formulated feed, Abfeed® S34 (Marifeed Pty (Ltd), Hermanus) for farmed abalone, Haliotis midae has resulted in larger gonads during reproductive seasons compared to the gonads of abalone fed kelp or diets that included fishmeal as the only main protein source. The aim of this study was to determine if the isoflavones present in the soya were responsible for this increase in gonad size and the subsequent effects on farmed abalone growth. Animals weighing between 40-50 g were fed one of seven isonitrogenous and isoenergetic diets containing either 0, 25, 50 or 100 percent of the soya component of the commercial feed (Abfeed® S34, Marifeed Pty (Ltd), Hermanus) from September 2013 to March 2014. An additional three diets were formulated to include crystalline isoflavone (ISO). These diets were identical to the 0 percent soya diet (i.e. the fishmeal only diet - FM), only ISO was included at the same rate that ISO occurred in the three soya diets. Data were analysed using a multiple forward stepwise regression analysis (MSR) to test the effects of ISO concentration, soya concentration, time, sex, time by concentration interaction and sex by concentration interaction on growth and gonad development and to identify those variables that most contributed to the model. The inclusion of crystalline ISO failed to promote larger gonads and had no effect on abalone growth, while growth and gonad development was dose dependent on soya inclusion rates with sex and time contributing to the models. Mean monthly weight gain in males correlated with increasing soya concentrations (c) (MSR, y = 3.24 + 0.002c, r2 = 0.23, p = 0.03), ranging from 3.11 ± 0.55 g abalone-1 month-1 to 4.43 ± 0.46 g abalone-1 month-1, while both male and female monthly length gain was not influenced by soya concentration with an overall mean of 1.62 ± 0.05 mm abalone-1 month-1 (MSR, p = 0.05 and p = 0.81, respectively). By December, the whole body mass, meat mass and visceral mass in both males and females decreased with increasing soya levels. However, by February, female whole body mass, meat mass and visceral mass positively correlated with soya levels. At the end of the study, male abalone fed FM with soya equivalent to the commercial feed had the highest whole body mass (69.00 ± 2.48 g abalone-1), meat mass (41.80 ± 1.12 g abalone-1), visceral mass (9.00 ± 2.47 g abalone-1) and gonad bulk index (42.70 ± 9.82 g abalone-1), while females were not influenced by soya concentrations with an overall whole body mass of 63.46 ± 0.79 g abalone-1. Weight loss was observed in all treatments between February and March, probably due to a spawning event. The moisture content in the meat was not influenced by treatment, however, visceral water loss was effected by both ISO and soya concentration with time and sex contributing to the model. The visceral water loss of females fed graded levels of soya decreased as a function of soya from December to March, and from December to February for males, whereas females fed ISO-enriched diets decreased as a function of ISO concentration (c) at the end of the study from 74.98 ± 0.88 to 73.10 ± 0.75 percent (MSR, y = 74.97 – 0.0025c, r2 = 0.20, p = 0.048). The inclusion of crystalline ISO had no significant effect on oogenesis in female farmed Haliotis midae, while the distribution of the predominant oocyte stage, stage 7 (second last stage prior to spawning) was dose-dependent in abalone fed increasing soya concentration (c) (MSR, y = 33.38 + 0.03c, r2 = 0.32, F(1, 18) = 8.52, p = 0.01). The increase in stage 7 oocytes in abalone fed FM with soya did not reduce the number of oocytes (44.96 ± 3.01 oocytes mm-2) present within the lumen, while the number of oocytes (o) in abalone fed the FM-only based diets decreased with increasing abundance of stage 7 oocytes (MSR, y = 58.28 – 0.48c, r2 = 0.38, F(1, 18) = 12.51, p = 0.002), possibly due to the increase in size of the oocytes with thicker jelly coats. This study provided evidence that crystalline isoflavone had no influence on abalone gonad development over five months, while soya had a dose-dependent effect on growth, gonad mass and oogenesis in farmed Haliotis midae. Formulated abalone feed could be manipulated at certain times of the year to obtain maximum growth. These implications and further studies were discussed.
- Full Text:
The use of probiotics in the diet of farmed South African abalone Haliotis midae L
- Authors: Maliza, Siyabonga
- Date: 2015
- Subjects: Haliotis midae -- South Africa , Abalones -- South Africa , Haliotis midae -- Feeding and feeds , Haliotis midae -- Effect of chemicals on , Haliotis midae -- Growth , Haliotis midae -- Immunology , Probiotics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5382 , http://hdl.handle.net/10962/d1018178
- Description: Physiological stress in farmed abalone can lead to immunosuppression and increase the susceptibility to bacterial, viral and parasitic disease, often followed by mortality. Thus, handling and poor water quality can reduce farm production efficiency. Probiotics in aquaculture have been effective in a wide range of species in enhancing immunity, survival, improving feed utilisation and growth. Three putative probionts identified as a result of in vitro screening had been beneficial to laboratory-reared abalone in a previous study. The aim of this study was to produce an abalone feed that contains a suite of probionts that may promote abalone growth and health under farming conditions. The objectives were to compare growth and physiological responses (i.e., haemocyte and phagocytosis counts) of abalone fed a commercial feed (Abfeed®S 34, Marifeed, Hermanus) supplemented with probiotics (i.e., the probiotic diet) to abalone fed the commercial feed without probiotic supplementation as a control treatment in a factorial design with handling method as an independent variable. This experiment was conducted at HIK Abalone Farm (Pty Ltd) for a period of eight months with initial weight and length 36.1 ± 0.05 g and 58.6 ± 0.06 mm abalone-1. Another experiment was carried out at Roman Bay Sea Farm (Pty) Ltd with initial weight and length 34.7 ± 0.17 g and 62.3 ± 0.18 mm abalone-1, but this experiment included one factor only, i.e. the presence and absence of the probionts in the feed. At HIK there was no significant interaction between diet and handling on average length and weight gain month-1 after four (p=0.81 and p=0.32) and eight (p=0.51 and p=0.53) months, respectively. Average length (additional handling = 73.9 ± 0.52 mm, normal farm handling = 75.8 ± 0.57 mm) and weight gain (mean: additional handling = 68.5 ± 1.20 g, normal farm handling = 74.3 ± 1.86 g) increased significantly in animals that were handled under normal farm procedure and were either fed probiotic or control diet after eight months (p=0.03 and p=0.02, respectively). There was no iii difference in length gain or weight gain of abalone fed the probiotic diet and those fed the control diet (ANOVA: F(1,16)=0.04, p=0.84; F(1,16)=0.14, p=0.71, respectively). After four months phagocytotic count was significantly different between dietary treatments with mean values of 74.50 ± 10.52 and 63.52 ± 14.52 % phagocytosis count per sample for the probionts and control treatment, respectively (p=0.04), there was no difference after eight months at HIK Abalone Farm. There was no effect of stressor application (p=0.14) and no interaction between dietary treatment and stressor application for this variable i.e., phagocytosis count (p=0.61). There was no difference in feed conversion ratio between treatments with values ranging from 2.9 to 3.8. At Roman Bay Sea farm, there was no significant difference in mean length gain between abalone fed the probiotic and control diet after eight months (repeated measures ANOVA: F(4,28)=16.54. Mean weight gain of abalone fed the probiotic diet was significantly greater than those fed the control diet after eight months (repeated measures ANOVA: F(4,28)=39.82, p(0.00001). There was no significant difference in haemocyte counts between animals fed either probiotic or control diet after four and eight months at Roman Bay Sea farm (p>0.05).
- Full Text:
- Authors: Maliza, Siyabonga
- Date: 2015
- Subjects: Haliotis midae -- South Africa , Abalones -- South Africa , Haliotis midae -- Feeding and feeds , Haliotis midae -- Effect of chemicals on , Haliotis midae -- Growth , Haliotis midae -- Immunology , Probiotics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5382 , http://hdl.handle.net/10962/d1018178
- Description: Physiological stress in farmed abalone can lead to immunosuppression and increase the susceptibility to bacterial, viral and parasitic disease, often followed by mortality. Thus, handling and poor water quality can reduce farm production efficiency. Probiotics in aquaculture have been effective in a wide range of species in enhancing immunity, survival, improving feed utilisation and growth. Three putative probionts identified as a result of in vitro screening had been beneficial to laboratory-reared abalone in a previous study. The aim of this study was to produce an abalone feed that contains a suite of probionts that may promote abalone growth and health under farming conditions. The objectives were to compare growth and physiological responses (i.e., haemocyte and phagocytosis counts) of abalone fed a commercial feed (Abfeed®S 34, Marifeed, Hermanus) supplemented with probiotics (i.e., the probiotic diet) to abalone fed the commercial feed without probiotic supplementation as a control treatment in a factorial design with handling method as an independent variable. This experiment was conducted at HIK Abalone Farm (Pty Ltd) for a period of eight months with initial weight and length 36.1 ± 0.05 g and 58.6 ± 0.06 mm abalone-1. Another experiment was carried out at Roman Bay Sea Farm (Pty) Ltd with initial weight and length 34.7 ± 0.17 g and 62.3 ± 0.18 mm abalone-1, but this experiment included one factor only, i.e. the presence and absence of the probionts in the feed. At HIK there was no significant interaction between diet and handling on average length and weight gain month-1 after four (p=0.81 and p=0.32) and eight (p=0.51 and p=0.53) months, respectively. Average length (additional handling = 73.9 ± 0.52 mm, normal farm handling = 75.8 ± 0.57 mm) and weight gain (mean: additional handling = 68.5 ± 1.20 g, normal farm handling = 74.3 ± 1.86 g) increased significantly in animals that were handled under normal farm procedure and were either fed probiotic or control diet after eight months (p=0.03 and p=0.02, respectively). There was no iii difference in length gain or weight gain of abalone fed the probiotic diet and those fed the control diet (ANOVA: F(1,16)=0.04, p=0.84; F(1,16)=0.14, p=0.71, respectively). After four months phagocytotic count was significantly different between dietary treatments with mean values of 74.50 ± 10.52 and 63.52 ± 14.52 % phagocytosis count per sample for the probionts and control treatment, respectively (p=0.04), there was no difference after eight months at HIK Abalone Farm. There was no effect of stressor application (p=0.14) and no interaction between dietary treatment and stressor application for this variable i.e., phagocytosis count (p=0.61). There was no difference in feed conversion ratio between treatments with values ranging from 2.9 to 3.8. At Roman Bay Sea farm, there was no significant difference in mean length gain between abalone fed the probiotic and control diet after eight months (repeated measures ANOVA: F(4,28)=16.54. Mean weight gain of abalone fed the probiotic diet was significantly greater than those fed the control diet after eight months (repeated measures ANOVA: F(4,28)=39.82, p(0.00001). There was no significant difference in haemocyte counts between animals fed either probiotic or control diet after four and eight months at Roman Bay Sea farm (p>0.05).
- Full Text:
Thermal physiology and behavioural ecology of the white shark, carcharodon carcharias
- Authors: Gennari, Enrico
- Date: 2015
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/64002 , vital:28522
- Description: Expected release date-May 2019
- Full Text:
- Authors: Gennari, Enrico
- Date: 2015
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/64002 , vital:28522
- Description: Expected release date-May 2019
- Full Text:
Assessing the genetic diversity of catface rockcod epinephelus andersoni in the subtropical Western Indian Ocean and modelling the effects of climate change on their distribution
- Authors: Coppinger, Christine Rose
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54499 , vital:26570
- Description: The catface rockcod Epinephelus andersoni is a range-restricted species that is endemic to the southeast coast of Africa from Quissico in Mozambique (subtropical) to Knysna in South Africa (warmtemperate). Its complex life-history, long-lived nature and high residency make E. andersoni potentially vulnerable to over-exploitation. Epinephelus andersoni is an important fishery species and has shown signs of depletion. Due to inadequate information necessary for management and conservation, further research is vital, particularly in the face of potentially significant climatic changes which could put further pressure on E. andersoni. The aim of the study was to provide information for the management of E. andersoni, with considerations for the possibly detrimental effects of future climate change. The objectives of this study were to describe the genetic structure and diversity of E. andersoni and to determine possible range shifts of E. andersoni with future changes in sea surface temperature. Genetic samples were collected throughout the distribution of E. andersoni. Standard DNA extraction and PCR using universal primers were conducted and nuclear (RPS7-1) and mitochondrial (cytochrome b) data were analysed to determine genetic diversity. A combination of nuclear and mitochondrial markers was used to ensure that the results were robust. RPS7-1 haplotype diversity was high (0.801) and an AMOVA on the RPS7-1 data showed significantly high among group variation (ΦCT = 0.204, p < 0.05) between five groups: 1. Quissico to Inhaca; 2. Cape Vidal to Port Edward; 3 Port St Johns to Coffee Bay; 4. Mbashe; 5. Port Alfred. This geographic structuring could be attributed to low gene flow across barriers such as the Port Alfred upwelling cell, the Mozambique Channel eddies and smaller more localised upwelling cells such as the Port St Johns cell. The cytochrome b results contrastingly indicate low haplotype diversity (0.309) and no differentiation (ΦCT = 0.265, p = 0.074) between groups and support the hypothesis of a historical population bottleneck. This may be due to an unusually slower mutation rate of the cytochrome b region than the RPS7-1 region, resulting in the RPS7-1 data showing a more recent picture of diversification. To complement the genetic results, niche modelling techniques were used to determine range shifts of E. andersoni with future temperature trends using species distribution and climatic data. The model illustrated a contraction of the E. andersoni distribution as well as future intensification of various upwelling cells along the south-east African coast including the Port Alfred upwelling cell. Due to the low gene flow across these barriers this intensification could decrease the resilience of E. andersoni, as its range becomes more limited with global change. The genetic data and modelling results combined provide useful information on which to base future fisheries management.
- Full Text:
- Authors: Coppinger, Christine Rose
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54499 , vital:26570
- Description: The catface rockcod Epinephelus andersoni is a range-restricted species that is endemic to the southeast coast of Africa from Quissico in Mozambique (subtropical) to Knysna in South Africa (warmtemperate). Its complex life-history, long-lived nature and high residency make E. andersoni potentially vulnerable to over-exploitation. Epinephelus andersoni is an important fishery species and has shown signs of depletion. Due to inadequate information necessary for management and conservation, further research is vital, particularly in the face of potentially significant climatic changes which could put further pressure on E. andersoni. The aim of the study was to provide information for the management of E. andersoni, with considerations for the possibly detrimental effects of future climate change. The objectives of this study were to describe the genetic structure and diversity of E. andersoni and to determine possible range shifts of E. andersoni with future changes in sea surface temperature. Genetic samples were collected throughout the distribution of E. andersoni. Standard DNA extraction and PCR using universal primers were conducted and nuclear (RPS7-1) and mitochondrial (cytochrome b) data were analysed to determine genetic diversity. A combination of nuclear and mitochondrial markers was used to ensure that the results were robust. RPS7-1 haplotype diversity was high (0.801) and an AMOVA on the RPS7-1 data showed significantly high among group variation (ΦCT = 0.204, p < 0.05) between five groups: 1. Quissico to Inhaca; 2. Cape Vidal to Port Edward; 3 Port St Johns to Coffee Bay; 4. Mbashe; 5. Port Alfred. This geographic structuring could be attributed to low gene flow across barriers such as the Port Alfred upwelling cell, the Mozambique Channel eddies and smaller more localised upwelling cells such as the Port St Johns cell. The cytochrome b results contrastingly indicate low haplotype diversity (0.309) and no differentiation (ΦCT = 0.265, p = 0.074) between groups and support the hypothesis of a historical population bottleneck. This may be due to an unusually slower mutation rate of the cytochrome b region than the RPS7-1 region, resulting in the RPS7-1 data showing a more recent picture of diversification. To complement the genetic results, niche modelling techniques were used to determine range shifts of E. andersoni with future temperature trends using species distribution and climatic data. The model illustrated a contraction of the E. andersoni distribution as well as future intensification of various upwelling cells along the south-east African coast including the Port Alfred upwelling cell. Due to the low gene flow across these barriers this intensification could decrease the resilience of E. andersoni, as its range becomes more limited with global change. The genetic data and modelling results combined provide useful information on which to base future fisheries management.
- Full Text:
Assessment of the Lake Liambezi fishery, Zambezi region, Namibia
- Authors: Simasiku, Evans Kamwi
- Date: 2014
- Subjects: Fishery management -- Namibia -- Lake Liambezi , Seines -- Namibia -- Lake Liambezi , Gillnetting -- Namibia -- Lake Liambezi , Fishes -- Namibia -- Lake Liambezi , Fisheries -- Catch effort -- Namibia -- Lake Liambezi
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5366 , http://hdl.handle.net/10962/d1013036
- Description: Lake Liambezi in the Zambezi Region of Namibia, formerly known as the Caprivi Region, is shallow (<6m deep) and characterised by cyclic episodes of filling and drying. When full the lake supports a highly productive fishery and when dry the lake is completely dry and used for agriculture and grazing. In 2000 the lake filled, and between May 2011 and April 2012 was surveyed using beach seine, experimental gillnets and catch landing surveys to obtain information for conservation and management recommendations for the fishery. Littoral fishes in Lake Liambezi and the Kavango floodplain were sampled using seine net and physicochemical properties were measured. Seine net surveys demonstrated that Lake Liambezi littoral zones were dominated by fishes of the family Alestidae (59.7%) while Cichlids constituted the most diverse family. Juvenile Tilapia rendalli and Oreochromis macrochir were among the five most important species in the littoral zone, indicating that these commercially important species use the littoral zone as a nursery ground. Since T. rendalli and O. macrochir are commercially important species, because of this, it is advised that seine nets should not be used. Catch efficiency between monofilament and multifilament gillnets in Lake Liambezi offshore waters were assessed. Catch efficiency experimental fishing trials showed that monofilament gillnets catch per unit effort (CPUE) was three times higher than that of multifilament gillnets for Oreochromis andersonii, O. macrochir, T. rendalli, Serranochromis macrocephalus and Clarias spp. Oreochromis andersonii comprised over 66% of the overall CPUE for both net types combined indicating the importance of this species in the gillnet fishery on the lake. A fishery has been established on the lake with more than 300 canoes and 120 fishermen using monofilament and multifilament gillnets. CPUE was 15 kg/canoe/day and was significantly (P < 0.05) associated with monthly temperature and moon phase parameters indicating that the fishery of Lake Liambezi may be altered by climate and environmental factors. Annual catch from Lake Liambezi was estimated at 3193t with an estimated productivity of 106kg/ha, suggesting that Lake Liambezi makes a significant contribution to the fish supply in the Zambezi Region. Recommendations were made to manage the Lake Liambezi fishery by imposing restrictions on effort (number of fishing boats), gear type, mesh sizes and access. Proper fisheries management and monitoring should incorporate climatic and environmental factors such as temperature and moon phase to meet the challenges of global climatic changes as well as other environmental issues.
- Full Text:
- Authors: Simasiku, Evans Kamwi
- Date: 2014
- Subjects: Fishery management -- Namibia -- Lake Liambezi , Seines -- Namibia -- Lake Liambezi , Gillnetting -- Namibia -- Lake Liambezi , Fishes -- Namibia -- Lake Liambezi , Fisheries -- Catch effort -- Namibia -- Lake Liambezi
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5366 , http://hdl.handle.net/10962/d1013036
- Description: Lake Liambezi in the Zambezi Region of Namibia, formerly known as the Caprivi Region, is shallow (<6m deep) and characterised by cyclic episodes of filling and drying. When full the lake supports a highly productive fishery and when dry the lake is completely dry and used for agriculture and grazing. In 2000 the lake filled, and between May 2011 and April 2012 was surveyed using beach seine, experimental gillnets and catch landing surveys to obtain information for conservation and management recommendations for the fishery. Littoral fishes in Lake Liambezi and the Kavango floodplain were sampled using seine net and physicochemical properties were measured. Seine net surveys demonstrated that Lake Liambezi littoral zones were dominated by fishes of the family Alestidae (59.7%) while Cichlids constituted the most diverse family. Juvenile Tilapia rendalli and Oreochromis macrochir were among the five most important species in the littoral zone, indicating that these commercially important species use the littoral zone as a nursery ground. Since T. rendalli and O. macrochir are commercially important species, because of this, it is advised that seine nets should not be used. Catch efficiency between monofilament and multifilament gillnets in Lake Liambezi offshore waters were assessed. Catch efficiency experimental fishing trials showed that monofilament gillnets catch per unit effort (CPUE) was three times higher than that of multifilament gillnets for Oreochromis andersonii, O. macrochir, T. rendalli, Serranochromis macrocephalus and Clarias spp. Oreochromis andersonii comprised over 66% of the overall CPUE for both net types combined indicating the importance of this species in the gillnet fishery on the lake. A fishery has been established on the lake with more than 300 canoes and 120 fishermen using monofilament and multifilament gillnets. CPUE was 15 kg/canoe/day and was significantly (P < 0.05) associated with monthly temperature and moon phase parameters indicating that the fishery of Lake Liambezi may be altered by climate and environmental factors. Annual catch from Lake Liambezi was estimated at 3193t with an estimated productivity of 106kg/ha, suggesting that Lake Liambezi makes a significant contribution to the fish supply in the Zambezi Region. Recommendations were made to manage the Lake Liambezi fishery by imposing restrictions on effort (number of fishing boats), gear type, mesh sizes and access. Proper fisheries management and monitoring should incorporate climatic and environmental factors such as temperature and moon phase to meet the challenges of global climatic changes as well as other environmental issues.
- Full Text:
Ecological consequences of non-native fish invasion in Eastern Cape headwater streams
- Authors: Ellender, Bruce Robert
- Date: 2014
- Subjects: Fishery management -- South Africa -- Eastern Cape Fishes -- Conservation -- South Africa Introduced fishes -- South Africa -- Eastern Cape Introduced organisms
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/69065 , vital:29380
- Description: The introduction, spread and concomitant impacts of non-native species are a global problem. Fish are among the most widely introduced vertebrate groups, with their impacts affecting multiple levels of organisation- from individuals, populations and communities, to entire ecosystems. In South Africa, the largest perceived threat to range-restricted endemic headwater stream fishes is said to be invasion by non-native fishes, however, as is the case elsewhere, invasive impacts are often a case of risk perception rather than actual risk analysis. Two range-restricted headwater species, the Eastern Cape redfin Pseudobarbus afer and the Border barb Barbus trevelyani are redlisted by the International Union for the Conservation of Nature (IUCN) as ‘Endangered’, primarily due to invasion by non-native fishes. To investigate invasions in South Africa, and provide a quantitative estimate of the impact of non-native fishes on the two imperilled endemics, P. afer and B. trevelyani, the overall aims of this thesis were to: (A) Provide a literature review on non-native fish invasions in South Africa; (B) Using two case studies on the headwaters of the perennial Keiskamma and episodic Swartkops River systems, investigate the naturalisation-invasion continuum to provide a holistic view of the invasion process in these variable environments. The specific thesis objectives were: (1) Reviewing current knowledge of invasive impacts of non-native fishes in South Africa; (2) Investigating invasibility of headwater stream environments by non-native fishes; (3) Determining the establishment success of non-native fishes, (4) Assessing the spatial and temporal impacts of invasion; (5) Understanding mechanisms responsible for non-native fish impacts; (6) Investigating the threat of non-native fish invasion on the genetic diversity of two the two headwater fishes, P. afer and B. trevelyani. Results from the literature review of fish invasions (Chapter 1) showed that South Africa has a long history of non-native fish introductions, spanning two and a half centuries. Currently, 55 species have been introduced or translocated. Many of these introduced species have become fully invasive (36%). Their impacts also span multiple levels of biological organisation. There was a general paucity of studies on fish invasions (38 studies), however, of those conducted, reviewed studies placed emphases on invasive impacts (25 studies) and the transport, introduction, establishment and spread stages of the invasion process were largely ignored. The two study systems, the Swartkops and Keiskamma Rivers, were heavily invaded and numbers of introduced species surpassed that of natives (Chapter 2, 3 and 5). Headwater streams had varying invasibility and a number of non-native species were successfully established (Chapter 2, 3, 5 and 6). The remainder of the invasions were casual incursions into headwater streams from source populations in mainstream and impoundment environments which were invasion hotspots. Irrespective of establishment, four predatory invaders (largemouth bass Micropterus salmoides, smallmouth bass M. dolomieu, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss) impacted heavily on native fish communities (Chapter 3, 4 and 5). Two broad types of invasion were documented, top down invasion by non-native O. mykiss and S. trutta and upstream invasion by M. salmoides and M. dolomieu (Chapter 3 and 5). Their impacts included changes in community structure, extirpation from invaded stream reaches resulting in contracted distribution, and isolation and fragmentation of native fish populations. The impacts of non-native predatory fishes were particularly acute for P. afer and B. trevelyani. Where non-native predatory fish occurred, P. afer and B. trevelyani had been extirpated (Chapter 3 and 5). As a result both native species exhibited contracted distributions (>20% habitat loss due to invasion). Upstream invasion by centrarchids isolated and fragmented P. afer populations into headwater refugia, while top down invasion by salmonids excluded B. trevelyani from invaded, more pristine stream reaches, by forcing the species into degraded unsuitable lower stream reaches. Predation also disrupted population processes such as adult dispersal for P. afer, and centrarchid-invaded zones acted as demographic sinks, where adults dispersing through invaded reaches were rapidly depleted. While the Mandela lineage of P. afer exhibited little within or between drainage genetic structuring, B. trevelyani was >4% divergent between drainages, and up to 2% divergent between streams within the Keiskamma River system (Chapter 7). The distribution of genetic diversity for B. trevelyani also indicated that the loss of diversity was imminent without immediate conservation interventions. This thesis has provided conclusive evidence that native fishes are vulnerable to invasion and that non-native predatory fishes have significant impacts on native fishes in Eastern Cape headwater streams. If management and conservation measures are implemented, the unwanted introduction and spread of non-native fishes may be restricted, allowing native fishes opportunities for recovery.
- Full Text:
- Authors: Ellender, Bruce Robert
- Date: 2014
- Subjects: Fishery management -- South Africa -- Eastern Cape Fishes -- Conservation -- South Africa Introduced fishes -- South Africa -- Eastern Cape Introduced organisms
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/69065 , vital:29380
- Description: The introduction, spread and concomitant impacts of non-native species are a global problem. Fish are among the most widely introduced vertebrate groups, with their impacts affecting multiple levels of organisation- from individuals, populations and communities, to entire ecosystems. In South Africa, the largest perceived threat to range-restricted endemic headwater stream fishes is said to be invasion by non-native fishes, however, as is the case elsewhere, invasive impacts are often a case of risk perception rather than actual risk analysis. Two range-restricted headwater species, the Eastern Cape redfin Pseudobarbus afer and the Border barb Barbus trevelyani are redlisted by the International Union for the Conservation of Nature (IUCN) as ‘Endangered’, primarily due to invasion by non-native fishes. To investigate invasions in South Africa, and provide a quantitative estimate of the impact of non-native fishes on the two imperilled endemics, P. afer and B. trevelyani, the overall aims of this thesis were to: (A) Provide a literature review on non-native fish invasions in South Africa; (B) Using two case studies on the headwaters of the perennial Keiskamma and episodic Swartkops River systems, investigate the naturalisation-invasion continuum to provide a holistic view of the invasion process in these variable environments. The specific thesis objectives were: (1) Reviewing current knowledge of invasive impacts of non-native fishes in South Africa; (2) Investigating invasibility of headwater stream environments by non-native fishes; (3) Determining the establishment success of non-native fishes, (4) Assessing the spatial and temporal impacts of invasion; (5) Understanding mechanisms responsible for non-native fish impacts; (6) Investigating the threat of non-native fish invasion on the genetic diversity of two the two headwater fishes, P. afer and B. trevelyani. Results from the literature review of fish invasions (Chapter 1) showed that South Africa has a long history of non-native fish introductions, spanning two and a half centuries. Currently, 55 species have been introduced or translocated. Many of these introduced species have become fully invasive (36%). Their impacts also span multiple levels of biological organisation. There was a general paucity of studies on fish invasions (38 studies), however, of those conducted, reviewed studies placed emphases on invasive impacts (25 studies) and the transport, introduction, establishment and spread stages of the invasion process were largely ignored. The two study systems, the Swartkops and Keiskamma Rivers, were heavily invaded and numbers of introduced species surpassed that of natives (Chapter 2, 3 and 5). Headwater streams had varying invasibility and a number of non-native species were successfully established (Chapter 2, 3, 5 and 6). The remainder of the invasions were casual incursions into headwater streams from source populations in mainstream and impoundment environments which were invasion hotspots. Irrespective of establishment, four predatory invaders (largemouth bass Micropterus salmoides, smallmouth bass M. dolomieu, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss) impacted heavily on native fish communities (Chapter 3, 4 and 5). Two broad types of invasion were documented, top down invasion by non-native O. mykiss and S. trutta and upstream invasion by M. salmoides and M. dolomieu (Chapter 3 and 5). Their impacts included changes in community structure, extirpation from invaded stream reaches resulting in contracted distribution, and isolation and fragmentation of native fish populations. The impacts of non-native predatory fishes were particularly acute for P. afer and B. trevelyani. Where non-native predatory fish occurred, P. afer and B. trevelyani had been extirpated (Chapter 3 and 5). As a result both native species exhibited contracted distributions (>20% habitat loss due to invasion). Upstream invasion by centrarchids isolated and fragmented P. afer populations into headwater refugia, while top down invasion by salmonids excluded B. trevelyani from invaded, more pristine stream reaches, by forcing the species into degraded unsuitable lower stream reaches. Predation also disrupted population processes such as adult dispersal for P. afer, and centrarchid-invaded zones acted as demographic sinks, where adults dispersing through invaded reaches were rapidly depleted. While the Mandela lineage of P. afer exhibited little within or between drainage genetic structuring, B. trevelyani was >4% divergent between drainages, and up to 2% divergent between streams within the Keiskamma River system (Chapter 7). The distribution of genetic diversity for B. trevelyani also indicated that the loss of diversity was imminent without immediate conservation interventions. This thesis has provided conclusive evidence that native fishes are vulnerable to invasion and that non-native predatory fishes have significant impacts on native fishes in Eastern Cape headwater streams. If management and conservation measures are implemented, the unwanted introduction and spread of non-native fishes may be restricted, allowing native fishes opportunities for recovery.
- Full Text:
Effect of diet and sex-sorting on growth and gonad development in farmed South African abalone, Haliotis midae
- Authors: Ayres, Devin William Philip
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5357 , http://hdl.handle.net/10962/d1010856 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Description: Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
- Full Text:
- Authors: Ayres, Devin William Philip
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5357 , http://hdl.handle.net/10962/d1010856 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Description: Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
- Full Text:
Genetic and morphometric variation of Octopus vulgaris in the Benguela Current region
- Authors: De Beer, Chénelle Lesley
- Date: 2014
- Subjects: Common octopus -- Africa, Southern , Common octopus -- Genetics , Common octopus -- Morphology , Common octopus -- Geographical distribution , Variation (Biology) , Benguela Current
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5362 , http://hdl.handle.net/10962/d1012971
- Description: The Benguela Current is a cold eastern boundary current located on the south-western coast of the African continent. The establishment of its present day features approximately two million years ago has triggered allopatric events which have driven genetic and/or phenotypic differentiation in many of the warm-temperate organisms that previously had continuous distributions along the south and west coast of southern Africa. However, since many of these species have responded differently, despite similar isolation times, research in this region provides a unique opportunity to increase our understanding of evolutionary processes. The common octopus (Octopus vulgaris, Cuvier 1797) is a coastal, sedentary species, inhabiting coral reefs or rocky environments at depths of up to a 100m. It is considered to be one of the most extensively studied cephalopod species due to its worldwide distribution. However, very little research has been conducted on O. vulgaris in southern Africa. In order to gain a holistic understanding of the effects of the Benguela Current on population connectivity, genetic and phenotypic diversity, and evolutionary history of O. vulgaris, a comparative genetic and morphological study was conducted across the Benguela region. A total of 168 specimens of O. vulgaris were collected from four different regions across the Benguela system. A small tissue sample was preserved in ethanol for molecular analysis, and the specimen was frozen whole for morphometric analysis in the laboratory. Octopus vulgaris genetic population structure and evolutionary history was investigated using a 580bp fragment of the mitochondrial cytochrome b (cytb) gene for 76 individuals located within the Benguela region, yielding 10 different haplotypes. AMOVA and pairwise FST analyses revealed significant genetic differentiation suggesting a northern-southern Benguela divergence. Estimates of time since most recent common ancestor, based on biogeographical calibrators and coalescent analyses, indicated that isolation between the Angolan and South African population occurred between ~231 Ka and 1 Ma. Mismatch distribution analyses revealed a past population expansion within the South African O. vulgaris roughly 129.31 Ka, whilst Bayesian skyline plots were indicative of gradual demographic growth within the Angolan population in the last ~100 Ka. Observed O. vulgaris population structure and demographic history was likely the result of historical climate-induced change within the system. Reconstruction of phylogenetic relationships within the Octopus genus, using cytb and COI suggest that O. vulgaris is not a monophyletic group and a major systematic revision is required. Furthermore, unidentified individuals from South Africa were found to group with species from Indo-West Pacific Oceans and were therefore considered to have been translocated through ballast water from Asia. While the molecular analysis indicated a significant northern-southern Benguela structure results from the principle component analysis (PCA) and discriminate function analysis (DFA) were unable to distinguish between O. vulgaris from different sampling localities throughout the Benguela Current region based on soft-parts, hard-parts and meristic characters. The lack of phenotypic variation, despite significant genetic divergence, highlights the importance of multi-method approaches in gaining a holistic understanding of the taxonomy and biogeography of species.
- Full Text:
- Authors: De Beer, Chénelle Lesley
- Date: 2014
- Subjects: Common octopus -- Africa, Southern , Common octopus -- Genetics , Common octopus -- Morphology , Common octopus -- Geographical distribution , Variation (Biology) , Benguela Current
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5362 , http://hdl.handle.net/10962/d1012971
- Description: The Benguela Current is a cold eastern boundary current located on the south-western coast of the African continent. The establishment of its present day features approximately two million years ago has triggered allopatric events which have driven genetic and/or phenotypic differentiation in many of the warm-temperate organisms that previously had continuous distributions along the south and west coast of southern Africa. However, since many of these species have responded differently, despite similar isolation times, research in this region provides a unique opportunity to increase our understanding of evolutionary processes. The common octopus (Octopus vulgaris, Cuvier 1797) is a coastal, sedentary species, inhabiting coral reefs or rocky environments at depths of up to a 100m. It is considered to be one of the most extensively studied cephalopod species due to its worldwide distribution. However, very little research has been conducted on O. vulgaris in southern Africa. In order to gain a holistic understanding of the effects of the Benguela Current on population connectivity, genetic and phenotypic diversity, and evolutionary history of O. vulgaris, a comparative genetic and morphological study was conducted across the Benguela region. A total of 168 specimens of O. vulgaris were collected from four different regions across the Benguela system. A small tissue sample was preserved in ethanol for molecular analysis, and the specimen was frozen whole for morphometric analysis in the laboratory. Octopus vulgaris genetic population structure and evolutionary history was investigated using a 580bp fragment of the mitochondrial cytochrome b (cytb) gene for 76 individuals located within the Benguela region, yielding 10 different haplotypes. AMOVA and pairwise FST analyses revealed significant genetic differentiation suggesting a northern-southern Benguela divergence. Estimates of time since most recent common ancestor, based on biogeographical calibrators and coalescent analyses, indicated that isolation between the Angolan and South African population occurred between ~231 Ka and 1 Ma. Mismatch distribution analyses revealed a past population expansion within the South African O. vulgaris roughly 129.31 Ka, whilst Bayesian skyline plots were indicative of gradual demographic growth within the Angolan population in the last ~100 Ka. Observed O. vulgaris population structure and demographic history was likely the result of historical climate-induced change within the system. Reconstruction of phylogenetic relationships within the Octopus genus, using cytb and COI suggest that O. vulgaris is not a monophyletic group and a major systematic revision is required. Furthermore, unidentified individuals from South Africa were found to group with species from Indo-West Pacific Oceans and were therefore considered to have been translocated through ballast water from Asia. While the molecular analysis indicated a significant northern-southern Benguela structure results from the principle component analysis (PCA) and discriminate function analysis (DFA) were unable to distinguish between O. vulgaris from different sampling localities throughout the Benguela Current region based on soft-parts, hard-parts and meristic characters. The lack of phenotypic variation, despite significant genetic divergence, highlights the importance of multi-method approaches in gaining a holistic understanding of the taxonomy and biogeography of species.
- Full Text:
Modelling the spatial and genetic response of the endemic sparid: Polysteganus praeorbitalis (Pisces: Sparidae) to climate change in the Agulhas Current system
- Authors: Isemonger, Devin Neil
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54509 , vital:26576
- Description: The Scotsman Seabream, Polysteganus praeorbitalis, is one of several large, slow-growing members of the Sparidae family of fishes endemic to the Agulhas Current system in the Western Indian Ocean (WIO). Relatively little research has been conducted on this species despite its importance to both recreational and commercial line fisheries in South Africa and the drastic decline in catch per unit effort (CPUE) that has been recorded since the 1940s. Changing sea temperatures as a result of global climate change are further expected to affect the distribution and abundance of many fish species based on their thermal tolerances, life histories and population structures. The ability of these species to shift their distribution and adapt to new environments and thermal conditions will depend to some degree on the levels of genetic variation and gene flow, within and between populations. A combined approach using species distribution modelling and genetic analyses may prove to be a useful tool in investigating the potential effects of climate change on the distribution and genetic diversity of species. An ensemble species distribution model (SDM) based on 205 occurrence records and 30 years of Reynolds Optimum Interpolated (OI) sea surface temperature data was constructed to predict the distributional response of P. praeorbitalis to climate change in the Agulhas Current system. The ensemble SDM displayed a true skill statistic (TSS) of 0.975 and an area under the receiver operating curve (ROC) of 0.999, indicating good model fit. Autumn and winter minimum temperatures, as well as bathymetry, were the most important predictor variables in the majority of models, indicating that these variables may directly constrain the distribution of P. praeorbitalis. In particular, the southern range edge of this species appeared to be constrained by autumn and winter minima, with high model agreement on this range edge. Conversely, the northern range limit showed poor model agreement leading to a gradual reduction in occurrence. This indicates that this range edge may be constrained by other factors not included in the models such as species interactions. The ensemble SDM projected the current range of P. praeorbitalis to be 1500 km², smaller than the published range for this species. The model underestimated the northern range edge of this species by approximately 5° latitude when binary transformed. This is probably due to the rarity of this species in the landings of the Mozambican linefishery, which was assumed to be an indication of low abundance of P. praeorbitalis in these waters. The absence of a specimen to verify the published northern range edge of this species indicates that the northern range edge produced by this model is likely to be closer to the actual range limit of the species. A range contraction of 30% occurring at both the northern and southern edge of P. praeorbitalis’ range and range fragmentation occurring, towards its northern range edge by 2030, was predicted. These changes are modelled to be the results of cooling related to the intensification of the Port Alfred upwelling cell and of warming predicted north of the Natal Bight and in southern Mozambique. Genetic analyses of the nuclear DNA (nDNA) S7 intron 1 and mitochondrial DNA (mtDNA) control region genes were carried out using 118 tissue samples of P. praeorbitalis collected at four main localities: the Eastern Cape, Transkei, southern KwaZulu-Natal and northern KwaZulu-Natal. Analyses of genetic diversity levels revealed relatively low diversity in the mtDNA dataset (Hd = 0.488; π = 0.004) and moderate levels of diversity in the nDNA dataset (Ad = 0.922; π = 0.005). The low levels of diversity observed in the mtDNA dataset might be explained by a number of factors, including high variation in spawning success, the negative effects of over-harvesting, or a recent population bottleneck. The last explanation is supported by characteristic star-shaped haplotype networks and unimodal mismatch distributions displayed by both datasets. These results, in conjunction with a significant (p = 0.005) negative Tajimas D value (-2.029) in the mtDNA dataset and significant (p = 0.0005) negative Fu’s F statistic in both the nDNA (F = -26.5) and mtDNA (F = -11.9) datasets, provide strong evidence for a recent population expansion after a bottleneck event in this species. Spatially, mtDNA diversity was highest in the Eastern Cape and lowest in the middle localities, while nDNA diversity showed the opposite pattern. These results may be indicative of differences in the sex ratio between localities, possibly as a result of the protogynous hermaphroditism that has been postulated for this species. Although pairwise comparisons and exact tests of population differentiation revealed no significant geneticdifferentiation between populations in the mtDNA dataset, there was some evidence of low levels of differentiation in the nDNA dataset. This occurred for comparisons between the Eastern Cape and Transkei (Fst = 0.039; p <0.05), and the northern KwaZulu-Natal (Fst = 0.045; p < 0.05).. This might be the result of one or a combination of factors including the effects of the Port Alfred upwelling cell on dispersal and gene flow, or the possibility of more than one spawning ground for this species promoting sub-structuring. A SAMOVA analyses run on the nDNA dataset maximised variance by grouping the Eastern Cape and southern KwaZulu-Natal together and Transkei and northern KwaZulu-Natal together in two groups. This revealed no evidence of spatial structure (p = 0.36), with only 3.30% of variation explained by this grouping. The removal of individuals below the estimated length at 50% maturity in the nDNA dataset, in order to test for temporal structure, resulted in stronger evidence of differentiation between the Eastern Cape and all other localities: Transkei (Fst = 0.081; p< 0.05), southern KwaZulu-Natal (Fst = 0.031; p<0.05), and northern KwaZulu-Natal (Fst = 0.078; p< 0.05). This indicates that some temporal genetic structure may exist between age classes within this species. The differentiation observed between the Eastern Cape and other localities, coupled with the high percentage of private haplotypes in the mtDNA dataset in this locality, indicates that this area is where P. praeorbitalis is most vulnerable to the potential negative effects of climate change on its genetic diversity. However, the vast majority of this species genetic diversity appears to reside towards the centre of its range where it is most abundant and the lack of strong genetic structure indicates high levels of gene flow. In conclusion, while P. praeorbitalis is vulnerable to range loss as a result of climate change, its genetic diversity is unlikely to be greatly affected.
- Full Text:
- Authors: Isemonger, Devin Neil
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54509 , vital:26576
- Description: The Scotsman Seabream, Polysteganus praeorbitalis, is one of several large, slow-growing members of the Sparidae family of fishes endemic to the Agulhas Current system in the Western Indian Ocean (WIO). Relatively little research has been conducted on this species despite its importance to both recreational and commercial line fisheries in South Africa and the drastic decline in catch per unit effort (CPUE) that has been recorded since the 1940s. Changing sea temperatures as a result of global climate change are further expected to affect the distribution and abundance of many fish species based on their thermal tolerances, life histories and population structures. The ability of these species to shift their distribution and adapt to new environments and thermal conditions will depend to some degree on the levels of genetic variation and gene flow, within and between populations. A combined approach using species distribution modelling and genetic analyses may prove to be a useful tool in investigating the potential effects of climate change on the distribution and genetic diversity of species. An ensemble species distribution model (SDM) based on 205 occurrence records and 30 years of Reynolds Optimum Interpolated (OI) sea surface temperature data was constructed to predict the distributional response of P. praeorbitalis to climate change in the Agulhas Current system. The ensemble SDM displayed a true skill statistic (TSS) of 0.975 and an area under the receiver operating curve (ROC) of 0.999, indicating good model fit. Autumn and winter minimum temperatures, as well as bathymetry, were the most important predictor variables in the majority of models, indicating that these variables may directly constrain the distribution of P. praeorbitalis. In particular, the southern range edge of this species appeared to be constrained by autumn and winter minima, with high model agreement on this range edge. Conversely, the northern range limit showed poor model agreement leading to a gradual reduction in occurrence. This indicates that this range edge may be constrained by other factors not included in the models such as species interactions. The ensemble SDM projected the current range of P. praeorbitalis to be 1500 km², smaller than the published range for this species. The model underestimated the northern range edge of this species by approximately 5° latitude when binary transformed. This is probably due to the rarity of this species in the landings of the Mozambican linefishery, which was assumed to be an indication of low abundance of P. praeorbitalis in these waters. The absence of a specimen to verify the published northern range edge of this species indicates that the northern range edge produced by this model is likely to be closer to the actual range limit of the species. A range contraction of 30% occurring at both the northern and southern edge of P. praeorbitalis’ range and range fragmentation occurring, towards its northern range edge by 2030, was predicted. These changes are modelled to be the results of cooling related to the intensification of the Port Alfred upwelling cell and of warming predicted north of the Natal Bight and in southern Mozambique. Genetic analyses of the nuclear DNA (nDNA) S7 intron 1 and mitochondrial DNA (mtDNA) control region genes were carried out using 118 tissue samples of P. praeorbitalis collected at four main localities: the Eastern Cape, Transkei, southern KwaZulu-Natal and northern KwaZulu-Natal. Analyses of genetic diversity levels revealed relatively low diversity in the mtDNA dataset (Hd = 0.488; π = 0.004) and moderate levels of diversity in the nDNA dataset (Ad = 0.922; π = 0.005). The low levels of diversity observed in the mtDNA dataset might be explained by a number of factors, including high variation in spawning success, the negative effects of over-harvesting, or a recent population bottleneck. The last explanation is supported by characteristic star-shaped haplotype networks and unimodal mismatch distributions displayed by both datasets. These results, in conjunction with a significant (p = 0.005) negative Tajimas D value (-2.029) in the mtDNA dataset and significant (p = 0.0005) negative Fu’s F statistic in both the nDNA (F = -26.5) and mtDNA (F = -11.9) datasets, provide strong evidence for a recent population expansion after a bottleneck event in this species. Spatially, mtDNA diversity was highest in the Eastern Cape and lowest in the middle localities, while nDNA diversity showed the opposite pattern. These results may be indicative of differences in the sex ratio between localities, possibly as a result of the protogynous hermaphroditism that has been postulated for this species. Although pairwise comparisons and exact tests of population differentiation revealed no significant geneticdifferentiation between populations in the mtDNA dataset, there was some evidence of low levels of differentiation in the nDNA dataset. This occurred for comparisons between the Eastern Cape and Transkei (Fst = 0.039; p <0.05), and the northern KwaZulu-Natal (Fst = 0.045; p < 0.05).. This might be the result of one or a combination of factors including the effects of the Port Alfred upwelling cell on dispersal and gene flow, or the possibility of more than one spawning ground for this species promoting sub-structuring. A SAMOVA analyses run on the nDNA dataset maximised variance by grouping the Eastern Cape and southern KwaZulu-Natal together and Transkei and northern KwaZulu-Natal together in two groups. This revealed no evidence of spatial structure (p = 0.36), with only 3.30% of variation explained by this grouping. The removal of individuals below the estimated length at 50% maturity in the nDNA dataset, in order to test for temporal structure, resulted in stronger evidence of differentiation between the Eastern Cape and all other localities: Transkei (Fst = 0.081; p< 0.05), southern KwaZulu-Natal (Fst = 0.031; p<0.05), and northern KwaZulu-Natal (Fst = 0.078; p< 0.05). This indicates that some temporal genetic structure may exist between age classes within this species. The differentiation observed between the Eastern Cape and other localities, coupled with the high percentage of private haplotypes in the mtDNA dataset in this locality, indicates that this area is where P. praeorbitalis is most vulnerable to the potential negative effects of climate change on its genetic diversity. However, the vast majority of this species genetic diversity appears to reside towards the centre of its range where it is most abundant and the lack of strong genetic structure indicates high levels of gene flow. In conclusion, while P. praeorbitalis is vulnerable to range loss as a result of climate change, its genetic diversity is unlikely to be greatly affected.
- Full Text:
Molecular systematics and antifreeze biology of sub-Antarctic notothenioid fishes
- Authors: Miya, Tshoanelo Portia
- Date: 2014
- Subjects: Nototheniidae , Antifreeze proteins , Nototheniidae -- Classification -- Molecular aspects , Polyacrylamide gel electrophoresis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5388 , http://hdl.handle.net/10962/d1020938
- Description: Fishes of the perciform suborder Notothenioidei are found in Antarctic and sub-Antarctic waters that are separated by the Antarctic Polar Front (APF), with some species being distributed on both sides of this front. In this wide latitudinal range, these fishes are exposed to different temperatures ranging from -2 °C in the High Antarctic regions to 12 °C in the sub-Antarctic regions. To survive in icy Antarctic waters, the Antarctic notothenioid species have evolved antifreeze glycoproteins (AFGPs) that prevent their body fluids from freezing. The findings of past research on the AFGP attributes of several notothenioid species inhabiting ice-free sub-Antarctic environments have presented a complex picture. Furthermore, previous taxonomic studies split widely distributed notothenioids into different species and/or subspecies, with other studies disagreeing with these splits. To understand the response of the sub-Antarctic notothenioids to warmer, ice-free environments, it is necessary to have a good understanding of their antifreeze biology and systematics. Therefore, this study aimed to determine the association, if any, between the antifreeze attributes of sub-Antarctic notothenioid fishes and their taxonomic status. And more...
- Full Text:
- Authors: Miya, Tshoanelo Portia
- Date: 2014
- Subjects: Nototheniidae , Antifreeze proteins , Nototheniidae -- Classification -- Molecular aspects , Polyacrylamide gel electrophoresis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5388 , http://hdl.handle.net/10962/d1020938
- Description: Fishes of the perciform suborder Notothenioidei are found in Antarctic and sub-Antarctic waters that are separated by the Antarctic Polar Front (APF), with some species being distributed on both sides of this front. In this wide latitudinal range, these fishes are exposed to different temperatures ranging from -2 °C in the High Antarctic regions to 12 °C in the sub-Antarctic regions. To survive in icy Antarctic waters, the Antarctic notothenioid species have evolved antifreeze glycoproteins (AFGPs) that prevent their body fluids from freezing. The findings of past research on the AFGP attributes of several notothenioid species inhabiting ice-free sub-Antarctic environments have presented a complex picture. Furthermore, previous taxonomic studies split widely distributed notothenioids into different species and/or subspecies, with other studies disagreeing with these splits. To understand the response of the sub-Antarctic notothenioids to warmer, ice-free environments, it is necessary to have a good understanding of their antifreeze biology and systematics. Therefore, this study aimed to determine the association, if any, between the antifreeze attributes of sub-Antarctic notothenioid fishes and their taxonomic status. And more...
- Full Text:
Prioritising native fish populations for conservation using genetics in the Groot Marico catchment, North West Province, South Africa
- Authors: Van der Walt, Kerry-Ann
- Date: 2014
- Subjects: Native fishes Fishery management -- South Africa -- North West Fish populations Fishes -- Conservation -- South Africa -- Western Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69102 , vital:29390
- Description: The Groot Marico catchment in the North West Province is a National Freshwater Ecosystem Priority Area (NFEPA) because it represents unique landscape features with unique biodiversity that are considered to be of special ecological significance. Three native freshwater species Amphilius uranoscopus, Chiloglanis pretoriae and Barbus motebensis, have high local conservation importance and B. motebensis is endemic to the catchment and is IUCN-listed as vulnerable. The main objective of this study is to contribute towards the effective conservation of these three species in the Groot Marico River system by assessing their genetic structure to determine whether tributary populations of the three species comprise of one genetic population or whether they are divided into genetically distinct subpopulations, in order to prioritise areas for conservation. The central null hypothesis was that there is no genetic differentiation between tributary populations (i.e., panmixia) of B. motebensis, A. uranoscopus and C. pretoriae in the Groot Marico catchment, North West Province. In total, 80 individuals per species were collected, targeting at least 10 individuals per population from a total of eight populations (seven tributaries and the Groot Marico main stem) and across the study area. Samples were collected by electrofishing and specimens were euthanized using an overdose of clove oil. A sample of muscle tissue was removed for genetic evaluation and the remainder of the specimens served as voucher specimens. For the genetic evaluation, mitochondrial (ND2, cyt b) and nuclear (S7) genes were used. Genetic techniques used were DNA extraction, polymerase chain reaction (PCR), purification and sequencing. From the 240 individuals collected, 123 sequences for B. motebensis, 111 sequences for A. uranoscopus and 103 sequences for C. pretoriae were analysed across all three genes. Statistical analysis included looking at cleaned sequences in order to obtain models using MODELTEST (version 3.06). Population structuring and phylogeographic analysis was performed in Arlequin (version 2000), TCS (version 1.2.1) and PAUP*. Results indicated that for B. motebensis the null hypothesis could be rejected as there were two distinct lineages (the Draai and Eastern lineages) that demonstrated significant divergence in both the ND2 and S7 genes, suggesting historical isolation. The low divergence in the mitochondrial cytochrome b gene (0% < D < 0.8%) suggests that this isolation is not very old and is probably not comparable to species level differentiation. The null hypothesis was also rejected for A. uranoscopus as there were also significant levels of differentiation between tributary populations resulting in the identification of two lineages (the Ribbok and Western lineages). However, for C. pretoriae, the null hypothesis could not be rejected as there was no genetic differentiation between tributary populations i.e., one panmictic population. Therefore, due to each species showing different genetic structuring within the tributary populations, more than one priority area for conservation needs to be implemented. These priority areas of conservation where therefore evaluated based on the current conservation status of the species (B. motebensis being vulnerable on the IUCN Red List), the number of Evolutionary Significant Units for each species and the overall genetic diversity of all three species in the Groot Marico catchment. In total, four tributary populations were conservation priorities areas, these were the Draai, Vanstraatens, Ribbok and Kaaloog tributaries. The Draai, Vanstraatens and Kaaloog tributaries were selected as priority areas for B. motebensis (B. motebensis is considered to be the most vulnerable of all three species). The Draai tributary was selected due to the B. motebensis population within the tributary showing isolation from the rest of the tributary populations. In order to conserve B. motebensis from the Southern lineage, the Vanstraatens and Kaaloog tributaries were selected. Reasons for selecting these two specific tributaries within the Southern lineage were that the Vanstraatens tributary had unique alleles (three Evolutionary Significant Units) for B. motebensis and the Kaaloog tributary had high genetic diversity (HD = 0.889, ND2 gene) when compared to the other tributary populations. The Ribbok and Vanstraatens tributaries were selected as priority areas for the conservation of A. uranoscopus. The Ribbok tributary was selected as it showed isolation from the rest of the tributary populations, as seen with the Draai tributary (B. motebensis) and the Vanstraatens tributary was selected to represent the Western lineage as it had the highest diversity for both genes (ND2 and S7). The Ribbok tributary has the highest prioritisation when compared to the Vanstraatens tributary. Chiloglanis pretoriae occurs within the Draai, Vanstraatens, Ribbok and Kaaloog tributaries, therefore by prioritising these tributaries for conservation, C. pretoriae will in turn be conserved.
- Full Text:
- Authors: Van der Walt, Kerry-Ann
- Date: 2014
- Subjects: Native fishes Fishery management -- South Africa -- North West Fish populations Fishes -- Conservation -- South Africa -- Western Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69102 , vital:29390
- Description: The Groot Marico catchment in the North West Province is a National Freshwater Ecosystem Priority Area (NFEPA) because it represents unique landscape features with unique biodiversity that are considered to be of special ecological significance. Three native freshwater species Amphilius uranoscopus, Chiloglanis pretoriae and Barbus motebensis, have high local conservation importance and B. motebensis is endemic to the catchment and is IUCN-listed as vulnerable. The main objective of this study is to contribute towards the effective conservation of these three species in the Groot Marico River system by assessing their genetic structure to determine whether tributary populations of the three species comprise of one genetic population or whether they are divided into genetically distinct subpopulations, in order to prioritise areas for conservation. The central null hypothesis was that there is no genetic differentiation between tributary populations (i.e., panmixia) of B. motebensis, A. uranoscopus and C. pretoriae in the Groot Marico catchment, North West Province. In total, 80 individuals per species were collected, targeting at least 10 individuals per population from a total of eight populations (seven tributaries and the Groot Marico main stem) and across the study area. Samples were collected by electrofishing and specimens were euthanized using an overdose of clove oil. A sample of muscle tissue was removed for genetic evaluation and the remainder of the specimens served as voucher specimens. For the genetic evaluation, mitochondrial (ND2, cyt b) and nuclear (S7) genes were used. Genetic techniques used were DNA extraction, polymerase chain reaction (PCR), purification and sequencing. From the 240 individuals collected, 123 sequences for B. motebensis, 111 sequences for A. uranoscopus and 103 sequences for C. pretoriae were analysed across all three genes. Statistical analysis included looking at cleaned sequences in order to obtain models using MODELTEST (version 3.06). Population structuring and phylogeographic analysis was performed in Arlequin (version 2000), TCS (version 1.2.1) and PAUP*. Results indicated that for B. motebensis the null hypothesis could be rejected as there were two distinct lineages (the Draai and Eastern lineages) that demonstrated significant divergence in both the ND2 and S7 genes, suggesting historical isolation. The low divergence in the mitochondrial cytochrome b gene (0% < D < 0.8%) suggests that this isolation is not very old and is probably not comparable to species level differentiation. The null hypothesis was also rejected for A. uranoscopus as there were also significant levels of differentiation between tributary populations resulting in the identification of two lineages (the Ribbok and Western lineages). However, for C. pretoriae, the null hypothesis could not be rejected as there was no genetic differentiation between tributary populations i.e., one panmictic population. Therefore, due to each species showing different genetic structuring within the tributary populations, more than one priority area for conservation needs to be implemented. These priority areas of conservation where therefore evaluated based on the current conservation status of the species (B. motebensis being vulnerable on the IUCN Red List), the number of Evolutionary Significant Units for each species and the overall genetic diversity of all three species in the Groot Marico catchment. In total, four tributary populations were conservation priorities areas, these were the Draai, Vanstraatens, Ribbok and Kaaloog tributaries. The Draai, Vanstraatens and Kaaloog tributaries were selected as priority areas for B. motebensis (B. motebensis is considered to be the most vulnerable of all three species). The Draai tributary was selected due to the B. motebensis population within the tributary showing isolation from the rest of the tributary populations. In order to conserve B. motebensis from the Southern lineage, the Vanstraatens and Kaaloog tributaries were selected. Reasons for selecting these two specific tributaries within the Southern lineage were that the Vanstraatens tributary had unique alleles (three Evolutionary Significant Units) for B. motebensis and the Kaaloog tributary had high genetic diversity (HD = 0.889, ND2 gene) when compared to the other tributary populations. The Ribbok and Vanstraatens tributaries were selected as priority areas for the conservation of A. uranoscopus. The Ribbok tributary was selected as it showed isolation from the rest of the tributary populations, as seen with the Draai tributary (B. motebensis) and the Vanstraatens tributary was selected to represent the Western lineage as it had the highest diversity for both genes (ND2 and S7). The Ribbok tributary has the highest prioritisation when compared to the Vanstraatens tributary. Chiloglanis pretoriae occurs within the Draai, Vanstraatens, Ribbok and Kaaloog tributaries, therefore by prioritising these tributaries for conservation, C. pretoriae will in turn be conserved.
- Full Text:
Regional connectivity, differentiation and biogeography of three species of the genus Lutjanus in the western Indian Ocean
- Authors: Morallana, Jonas Moqebelo
- Date: 2014
- Subjects: Lutjanus -- Indian Ocean , Biogeography -- Indian Ocean , Phylogeography -- Indian Ocean , Lutjanus -- Geographical distribution , Lutjanus -- Variation , Mitochondrial DNA , Animal genetics , Variation (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5369 , http://hdl.handle.net/10962/d1013293
- Description: Snappers of the genus Lutjanus are small to large predatory fishes occurring in inshore circumtropical and subtropical waters throughout the world. These fishes support fisheries across their distribution range. Within the Western Indian Ocean (WIO), previous studies on Lutjanus kasmira revealed limited spatial genetic differentiation, whereas Lutjanus fulviflamma showed high genetic connectivity. The phylogenetic relationships among WIO snappers are unknown. Previous studies in the Indo-Pacific (IP) did not include any WIO representatives. This study examined (1) the phylogeographic patterns in Lutjanus bohar, L. fulviflamma and L. lutjanus to understand the origins and factors influencing the distribution of diversity in the region, (2) how the physical environment, biological, and ecological factors influence genetic diversity, (3) the placement of WIO snappers in context to those from the IP, as well as the placement of taxa not included previously, (4) extent of differentiation among conspecifics from the two regions, and (5) the relationship of the Caesionidae to the Lutjanidae. Samples were sourced from across the WIO and from peripheral localities, where possible. DNA sequence data were generated from two mitochondrial gene regions (cyt-b and NADH-2) and a nuclear gene region (S7 intron 1). Data were analysed under a phylogeographic framework to examine genetic structure, diversity and differentiation among identified regions for each of the three species. Other sequence data were generated from two mitochondrial gene regions (COII and 16S rDNA) to examine the phylogenetic placement of WIO snappers in context of the IP snappers and the relationship of the Caesionidae to the Lutjanidae. Lutjanus bohar and L. fulviflamma displayed high genetic diversity, but lower diversities were observed for L. lutjanus. Genetic differentiation was observed between Mozambique and Maldives in L. bohar. Lutjanus fulviflamma was differentiated in South Africa, Mozambique, Mauritius and Thailand, while differentiation was observed between Kenya and Tanzania in Lutjanus lutjanus. Overall, low genetic differentiation and high connectivity were observed for each of the three species. This differentiation may result from intrinsic features of the species and extrinsic features of the environment, whereas the connectivity is mainly influenced by the pelagic larval duration. These patterns of differentiation are in accordance with a proposed vicariant biogeographic hypothesis for the origins of regional faunas of the IP. Phylogenies were similar to those published, with additional taxa not altering the previous groupings found. Conspecifics from the two regions clustered together, with varying degrees of differentiation among the WIO and IP, depending on the species. Members of the Caesionidae were nested within Lutjanidae, suggesting that morphological characters separating the two families are taxonomically insignificant. This affirms previous notions that the Caesionidae should be a subfamily within the Lutjanidae. This is the first multi-gene study, examining differentiation in multiple species of snapper over a wide geographic area in the WIO, and the results of this study could have potential implications for fisheries management and conservation.
- Full Text:
- Authors: Morallana, Jonas Moqebelo
- Date: 2014
- Subjects: Lutjanus -- Indian Ocean , Biogeography -- Indian Ocean , Phylogeography -- Indian Ocean , Lutjanus -- Geographical distribution , Lutjanus -- Variation , Mitochondrial DNA , Animal genetics , Variation (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5369 , http://hdl.handle.net/10962/d1013293
- Description: Snappers of the genus Lutjanus are small to large predatory fishes occurring in inshore circumtropical and subtropical waters throughout the world. These fishes support fisheries across their distribution range. Within the Western Indian Ocean (WIO), previous studies on Lutjanus kasmira revealed limited spatial genetic differentiation, whereas Lutjanus fulviflamma showed high genetic connectivity. The phylogenetic relationships among WIO snappers are unknown. Previous studies in the Indo-Pacific (IP) did not include any WIO representatives. This study examined (1) the phylogeographic patterns in Lutjanus bohar, L. fulviflamma and L. lutjanus to understand the origins and factors influencing the distribution of diversity in the region, (2) how the physical environment, biological, and ecological factors influence genetic diversity, (3) the placement of WIO snappers in context to those from the IP, as well as the placement of taxa not included previously, (4) extent of differentiation among conspecifics from the two regions, and (5) the relationship of the Caesionidae to the Lutjanidae. Samples were sourced from across the WIO and from peripheral localities, where possible. DNA sequence data were generated from two mitochondrial gene regions (cyt-b and NADH-2) and a nuclear gene region (S7 intron 1). Data were analysed under a phylogeographic framework to examine genetic structure, diversity and differentiation among identified regions for each of the three species. Other sequence data were generated from two mitochondrial gene regions (COII and 16S rDNA) to examine the phylogenetic placement of WIO snappers in context of the IP snappers and the relationship of the Caesionidae to the Lutjanidae. Lutjanus bohar and L. fulviflamma displayed high genetic diversity, but lower diversities were observed for L. lutjanus. Genetic differentiation was observed between Mozambique and Maldives in L. bohar. Lutjanus fulviflamma was differentiated in South Africa, Mozambique, Mauritius and Thailand, while differentiation was observed between Kenya and Tanzania in Lutjanus lutjanus. Overall, low genetic differentiation and high connectivity were observed for each of the three species. This differentiation may result from intrinsic features of the species and extrinsic features of the environment, whereas the connectivity is mainly influenced by the pelagic larval duration. These patterns of differentiation are in accordance with a proposed vicariant biogeographic hypothesis for the origins of regional faunas of the IP. Phylogenies were similar to those published, with additional taxa not altering the previous groupings found. Conspecifics from the two regions clustered together, with varying degrees of differentiation among the WIO and IP, depending on the species. Members of the Caesionidae were nested within Lutjanidae, suggesting that morphological characters separating the two families are taxonomically insignificant. This affirms previous notions that the Caesionidae should be a subfamily within the Lutjanidae. This is the first multi-gene study, examining differentiation in multiple species of snapper over a wide geographic area in the WIO, and the results of this study could have potential implications for fisheries management and conservation.
- Full Text: