Predictability of Geomagnetically Induced Currents using neural networks
- Authors: Lotz, Stefanus Ignatius
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
- Authors: Lotz, Stefanus Ignatius
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
An analysis of neural networks and time series techniques for demand forecasting
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
- «
- ‹
- 1
- ›
- »