Macroplastics in the environment: are they suitable habitats for macroinvertebrates in riverine systems?
- Authors: Ali, Andrew Abagai
- Date: 2023-10-13
- Subjects: Macroplastics , Aquatic invertebrates South Africa Eastern Cape , Experimental ecology , Plastic scrap , Environmental degradation , Functional ecology , Biotic communities
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424153 , vital:72128
- Description: Emerging pollutants, such as plastics are threat to freshwater ecosystems, and may negatively impact riverine systems. They can modify riverine habitats and affect aquatic organism distribution and composition. Knowledge of how macroplastics alter riverine habitat heterogeneity, and their effects on macroinvertebrate assemblage structure is sparse, especially in Africa. This study examines the effect of hydraulic biotopes on the colonisation, establishment and succession patterns of macroinvertebrates on macroplastic and natural substrates based on the taxonomic and trait-based approach. Four experimental sites from minimally impacted upper reaches of the Buffalo, Kat, Kowie, and Swartkops Rivers in the Eastern Cape of South Africa were selected for the deployment of plastic substrates. Plastics materials, including polyethylene terephthalate (PET) bottles and natural substrate composed of stone and vegetation, were used to formulate three substrate groups: Group 1: 100% natural substrates (NS), Group 2: 50% natural substrates and 50% plastic material (NP), and Group 3: 100% plastic materials (PD). These substrates were placed in litter bags of equal dimension (25 cm by 35 cm, with 2.5 cm mesh) and deployed randomly in three hydraulic biotopes (pools, riffles, runs) over a period of 180 days (October 2021 to April 2022). A total of 216 substrate bags, 54 bags per substrate were deployed per site in the four experimental sites. Twelve bags from each substrate group were retrieved at an interval of 30 days beginning on day 30 after deployment, and analysed for the establishment of macroinvertebrate communities. Based on composite hydraulic biotope data, Simpson index was significantly higher (P < 0.05) for macroinvertebrate assemblage structure on the 50% and 100% macroplastic substrate groups compared to natural substrates. With the exception of Tabanidae, Glossosomatidae, and Psephenidae, all macroinvertebrate taxa recorded showed non-significant positive correlations with all three substrate groups. However, Tabanidae, Glossosomatidae, and Psephenidae showed significant positive correlation with the 100% natural substrates, 50% plastic substrates and 100% plastic substrates, respectively. The parsimony analysis reveal that, within 30 days, all substrate groups underwent similar succession, with high abundance of pioneer taxa which increased on days 60 and 90, and then decreased from days 120 to 180. For the the pool biotope, Shannon and Simpson indices were significantly higher (P < 0.05) for the macroinvertabrates collected over the natural substates compared with those collected on the macroplastic substrate groups. However, in the riffle and run biotopes, all diversity indices were similar for all substrate groups and no statistically significant difference was observed. Statistically significant higher values for taxonomic richness, diversity, and evenness were found on day 30 to 90 for the riffle biotopes, and day 30 to 60 for the run biotopes. The run biotope presented temporal statistical significant variability in taxonomic composition with different macroinvertebrate communities recorded on days 30 and 60 compared with days 90 to 180. However, in pools and riffles, no temporal variation was observed in the taxonomic composition of macroinvertebrates on all three substrate groups. The trait-based fuzzy correspondence analysis revealed differential spatial-temporal distribution of macroinvertebrate traits on all three substrate group. The early colonisers i.e. day 30 – 60, were dominated by group of taxa characterised by medium (>10 – 20 mm) and large (20 > 40) body size, flat body, collector-gatherers, free-living, and predators. The late colonisers, collected mainly on day 150 and 180 were dominated by taxa with a preference for high flow velocity (0.3 - 0.6 m/s), permanent attachment, and filter-feeding mode. Traits such as oval and flat body shape, medium body size (>10 - 20 mm), skating and clinging/climbing mobility, temporal attachment, shredders, predators, prey, and plastron and spiracle respiration showed positive correlation with the 100% macroplastic substrates. Filter feeding, crawling, permanent attachment, a preference for fast velocity (0.3-0.6 m/s), and coarse particle organic matter were positively correlated with the 50% macroplastic substrates. Overall, the results provided critical insights on the impact of macroplastics on the assemblage structure of biological communities by acting as suitable habitats in stream ecosystems. The study elucidated the role of traits of aquatic organisms in mediating the colonisation of plastics substrates, providing insights into the impact of plastics proliferation on riverine ecosystem functioning. Furthermore, the finding provides a baseline insight into the influence of hydraulic biotopes on the colonisation and establishment of macroinvertebrates on macroplastic acting as artificial riverine habitat. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ali, Andrew Abagai
- Date: 2023-10-13
- Subjects: Macroplastics , Aquatic invertebrates South Africa Eastern Cape , Experimental ecology , Plastic scrap , Environmental degradation , Functional ecology , Biotic communities
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424153 , vital:72128
- Description: Emerging pollutants, such as plastics are threat to freshwater ecosystems, and may negatively impact riverine systems. They can modify riverine habitats and affect aquatic organism distribution and composition. Knowledge of how macroplastics alter riverine habitat heterogeneity, and their effects on macroinvertebrate assemblage structure is sparse, especially in Africa. This study examines the effect of hydraulic biotopes on the colonisation, establishment and succession patterns of macroinvertebrates on macroplastic and natural substrates based on the taxonomic and trait-based approach. Four experimental sites from minimally impacted upper reaches of the Buffalo, Kat, Kowie, and Swartkops Rivers in the Eastern Cape of South Africa were selected for the deployment of plastic substrates. Plastics materials, including polyethylene terephthalate (PET) bottles and natural substrate composed of stone and vegetation, were used to formulate three substrate groups: Group 1: 100% natural substrates (NS), Group 2: 50% natural substrates and 50% plastic material (NP), and Group 3: 100% plastic materials (PD). These substrates were placed in litter bags of equal dimension (25 cm by 35 cm, with 2.5 cm mesh) and deployed randomly in three hydraulic biotopes (pools, riffles, runs) over a period of 180 days (October 2021 to April 2022). A total of 216 substrate bags, 54 bags per substrate were deployed per site in the four experimental sites. Twelve bags from each substrate group were retrieved at an interval of 30 days beginning on day 30 after deployment, and analysed for the establishment of macroinvertebrate communities. Based on composite hydraulic biotope data, Simpson index was significantly higher (P < 0.05) for macroinvertebrate assemblage structure on the 50% and 100% macroplastic substrate groups compared to natural substrates. With the exception of Tabanidae, Glossosomatidae, and Psephenidae, all macroinvertebrate taxa recorded showed non-significant positive correlations with all three substrate groups. However, Tabanidae, Glossosomatidae, and Psephenidae showed significant positive correlation with the 100% natural substrates, 50% plastic substrates and 100% plastic substrates, respectively. The parsimony analysis reveal that, within 30 days, all substrate groups underwent similar succession, with high abundance of pioneer taxa which increased on days 60 and 90, and then decreased from days 120 to 180. For the the pool biotope, Shannon and Simpson indices were significantly higher (P < 0.05) for the macroinvertabrates collected over the natural substates compared with those collected on the macroplastic substrate groups. However, in the riffle and run biotopes, all diversity indices were similar for all substrate groups and no statistically significant difference was observed. Statistically significant higher values for taxonomic richness, diversity, and evenness were found on day 30 to 90 for the riffle biotopes, and day 30 to 60 for the run biotopes. The run biotope presented temporal statistical significant variability in taxonomic composition with different macroinvertebrate communities recorded on days 30 and 60 compared with days 90 to 180. However, in pools and riffles, no temporal variation was observed in the taxonomic composition of macroinvertebrates on all three substrate groups. The trait-based fuzzy correspondence analysis revealed differential spatial-temporal distribution of macroinvertebrate traits on all three substrate group. The early colonisers i.e. day 30 – 60, were dominated by group of taxa characterised by medium (>10 – 20 mm) and large (20 > 40) body size, flat body, collector-gatherers, free-living, and predators. The late colonisers, collected mainly on day 150 and 180 were dominated by taxa with a preference for high flow velocity (0.3 - 0.6 m/s), permanent attachment, and filter-feeding mode. Traits such as oval and flat body shape, medium body size (>10 - 20 mm), skating and clinging/climbing mobility, temporal attachment, shredders, predators, prey, and plastron and spiracle respiration showed positive correlation with the 100% macroplastic substrates. Filter feeding, crawling, permanent attachment, a preference for fast velocity (0.3-0.6 m/s), and coarse particle organic matter were positively correlated with the 50% macroplastic substrates. Overall, the results provided critical insights on the impact of macroplastics on the assemblage structure of biological communities by acting as suitable habitats in stream ecosystems. The study elucidated the role of traits of aquatic organisms in mediating the colonisation of plastics substrates, providing insights into the impact of plastics proliferation on riverine ecosystem functioning. Furthermore, the finding provides a baseline insight into the influence of hydraulic biotopes on the colonisation and establishment of macroinvertebrates on macroplastic acting as artificial riverine habitat. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Patterns and drivers of benthic macrofouna to support systematic conservation planning for marine unconsolidated sediment ecosystems
- Authors: Karenyi, Natasha
- Date: 2014
- Subjects: Marine sediments -- Microbiology , Biotic communities , Ecosystem management , Conservation of natural resources
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10355 , http://hdl.handle.net/10948/d1020989
- Description: Marine unconsolidated sediments constitute the largest ecosystems on earth in terms of spatial coverage, but there are still critical gaps in the science required to support conservation and ecosystem-based management. This is mainly due to the inaccessibility of these ecosystems in wave-exposed environments or deeper waters and the difficulty in observing biota in their three-dimensional sedimentary habitat. Currently, the physical driving processes of intertidal unconsolidated sediment ecosystems are much better understood than those of the subtidal ecosystems. However, these ecosystems are linked through water and sediment movement. This thesis, therefore, considers the continuum of unconsolidated sediment ecosystems across the entire continental shelf (i.e. intertidal to the shelf edge). The aim of this thesis was two-fold; (i) to advance the foundational understanding of biodiversity patterns and driving processes in unconsolidated sediment habitats, and (ii) to apply this knowledge in the development of a systematic conservation plan for marine unconsolidated sediment ecosystems. The South African west coast continental shelf was used as a case study in order to represent Eastern boundary upwelling regions. This study sought to investigate biodiversity patterns in macro-infaunal communities and determine their driving processes for incorporation into habitat classifications and the development of a habitat map. Systematic conservation plans require a map of biodiversity patterns and processes, and quantitative conservation targets to ensure representation of all biodiversity features including habitats.in marine protected areas. This thesis provided these key elements by classifying the unconsolidated sediment habitats and determining habitat-specific evidence-based conservation targets to support conservation of these important ecosystems. The application of these elements was then demonstrated in a systematic conservation plan for the unconsolidated sediment ecosystems of the South African west coast. Diversity patterns were examined using physical and macro-infauna data, ranging from the beach to the shelf edge (0-412 m). These data were analysed to develop two different habitat classifications, namely seascapes derived from geophysical and biophysical data, and biotopes derived from the combination of macro-infaunal and physical data. Multivariate analyses of 13 physical variables identified eight seascapes for the unconsolidated sediment samples from 48 sites on the South African west coast. These were based on depth, slope, sediment type, and upwelling-related processes (i.e. maximum chlorophyll concentration, sediment organic carbon content and austral summer bottom oxygen concentration). Latitude and bottom temperature were not considered major drivers of seascapes on the west coast because latitude closely reflected changes in upwelling-related processes and the temperature range was narrow across the shelf. This study revealed that productivity, a biophysical variable not usually included in geo-physical habitat classifications, played a significant role in the definition of seascapes on the South African west coast. It is therefore recommended that productivity be included in future seascape classifications to improve the utility of these classifications particularly in areas of variable productivity. Seascapes should, however, be tested against biological data to improve the understanding of key physical drivers of communities in unconsolidated sediment ecosystems. Macro-infaunal community distributions were determined along with their physical drivers for the unconsolidated sediments of the South African west coast. A total of 44 828 individuals from 469 taxa were identified from 48 sites representing 46.2 m2 of seafloor. Seven distinct macro-infaunal communities were defined through multivariate analyses and their key characteristic and distinguishing species were identified. These communities reflected five depth zones across the shelf, namely beach, inner shelf (10-42 m), middle shelf (60-142 m), outer shelf (150-357 m) and shelf edge (348-412 m). The processes driving the community structure of these depth zones were postulated to be tides, wave turbulence, seasonal hypoxia, habitat stability and homogeneity, and internal tides and/or shelf break upwelling, with drivers listed in order of increasing influence with depth. The middle shelf was further separated into three distinct communities based on sediment type, sediment organic carbon content and frequency of hypoxia. Variations in water turbulence, sediment grain size, upwelling-related variables and riverine sediment input were identified as the likely primary drivers of macro-infaunal community patterns. This chapter culminated in the development of a biotope classification based on the combination of macro-infaunal communities and their physical habitats (i.e. biotopes). South Africa has developed an expert-derived National Marine and Coastal Habitat (SANMC) Classification System which is used as a biodiversity surrogate in ecosystem assessment and spatial planning. This thesis tested the validity of this classification and the data derived Seascape classification against macro-infauna species abundance and biomass data in an effort to determine how well the different classifications represent macro-infaunal diversity of the west coast. These two classifications were also compared to the Biotope classification which combines macro-infaunal communities with their physical habitats. A canonical analysis of principle coordinates (CAP) was utilised to test the success with which each sample was allocated to the relevant habitat type in each classification. The total allocation success for each classification was used as a measure of effectiveness in terms of representing biodiversity patterns. Both classifications had similar allocation successes of 89-92 percent and 92-94 percent for the Seascape and National Habitat Classification respectively, but either over- or under-classified the macrofauna communities. The Biotope classification had the highest allocation success (98 percent), therefore it is the most accurate reflection of the macrofauna biodiversity patterns on the west coast. A key finding of this study was the increasing accuracy of classifications from physically- to expert- to biologically-derived habitat classifications. In this thesis, the Biotope classification was deemed the best representative of biodiversity patterns and was therefore used to produce the Biotope map for use in spatial assessment and planning. The distinct depth patterns that emerged in both the Seascape and Biotope classifications highlighted the need for further investigation of the relationship between depth and biodiversity. Despite variability in macro-infaunal communities, a general unifying pattern in biodiversity across the shelf was sought. Three relationships between depth and species richness have been described in the literature; namely a unimodal pattern, a positively linear relationship with depth, and no relationship between depth and species richness. These hypotheses were tested on the west coast. Two different species richness metrics were utilised to test the depth-diversity relationship, namely observed species density (spp.0.2m-2) and estimated species richness (spp.site-1). Observed species density increased from the beach to the shelf edge (350 m), then decreased to 412 m. The decline may have been due to difficulty in detecting species at greater depths as a result of sampling challenges. The inclusion of an innovative extrapolative method for estimating species richness (the capture-recapture heterogeneity model) within the Bayesian statistical framework mitigated the effects of species detection heterogeneity and revealed that species richness actually increased continuously across the shelf from beach to shelf edge. Thus the general relationship between depth and species richness is positively linear on the west coast of South Africa The new macro-infauna dataset and biotope map provided the opportunity to develop the first habitat-specific evidence-based conservation targets for unconsolidated sediments of the west coast. Species-Area Relationship (SAR) based conservation targets were developed for the biotopes using a modification of the generally accepted methodology. The accepted methodology has three steps (i) the estimation of total species richness for each habitat using the Bootstrap asymptotic estimator, (ii) the calculation of the slope of the species area curve (i.e. the z-value), and (iii) the calculation of targets representing 80 percent of the species. The inclusion of an innovative extrapolative species richness estimator, the Multi-species Site Occupancy Model (MSOM) provided better species richness estimation than the more conventional bootstrap species richness estimator, even though both are based on species accumulation. The MSOM, applied in the Bayesian statistical framework takes detectability of a species into account.
- Full Text:
- Date Issued: 2014
- Authors: Karenyi, Natasha
- Date: 2014
- Subjects: Marine sediments -- Microbiology , Biotic communities , Ecosystem management , Conservation of natural resources
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10355 , http://hdl.handle.net/10948/d1020989
- Description: Marine unconsolidated sediments constitute the largest ecosystems on earth in terms of spatial coverage, but there are still critical gaps in the science required to support conservation and ecosystem-based management. This is mainly due to the inaccessibility of these ecosystems in wave-exposed environments or deeper waters and the difficulty in observing biota in their three-dimensional sedimentary habitat. Currently, the physical driving processes of intertidal unconsolidated sediment ecosystems are much better understood than those of the subtidal ecosystems. However, these ecosystems are linked through water and sediment movement. This thesis, therefore, considers the continuum of unconsolidated sediment ecosystems across the entire continental shelf (i.e. intertidal to the shelf edge). The aim of this thesis was two-fold; (i) to advance the foundational understanding of biodiversity patterns and driving processes in unconsolidated sediment habitats, and (ii) to apply this knowledge in the development of a systematic conservation plan for marine unconsolidated sediment ecosystems. The South African west coast continental shelf was used as a case study in order to represent Eastern boundary upwelling regions. This study sought to investigate biodiversity patterns in macro-infaunal communities and determine their driving processes for incorporation into habitat classifications and the development of a habitat map. Systematic conservation plans require a map of biodiversity patterns and processes, and quantitative conservation targets to ensure representation of all biodiversity features including habitats.in marine protected areas. This thesis provided these key elements by classifying the unconsolidated sediment habitats and determining habitat-specific evidence-based conservation targets to support conservation of these important ecosystems. The application of these elements was then demonstrated in a systematic conservation plan for the unconsolidated sediment ecosystems of the South African west coast. Diversity patterns were examined using physical and macro-infauna data, ranging from the beach to the shelf edge (0-412 m). These data were analysed to develop two different habitat classifications, namely seascapes derived from geophysical and biophysical data, and biotopes derived from the combination of macro-infaunal and physical data. Multivariate analyses of 13 physical variables identified eight seascapes for the unconsolidated sediment samples from 48 sites on the South African west coast. These were based on depth, slope, sediment type, and upwelling-related processes (i.e. maximum chlorophyll concentration, sediment organic carbon content and austral summer bottom oxygen concentration). Latitude and bottom temperature were not considered major drivers of seascapes on the west coast because latitude closely reflected changes in upwelling-related processes and the temperature range was narrow across the shelf. This study revealed that productivity, a biophysical variable not usually included in geo-physical habitat classifications, played a significant role in the definition of seascapes on the South African west coast. It is therefore recommended that productivity be included in future seascape classifications to improve the utility of these classifications particularly in areas of variable productivity. Seascapes should, however, be tested against biological data to improve the understanding of key physical drivers of communities in unconsolidated sediment ecosystems. Macro-infaunal community distributions were determined along with their physical drivers for the unconsolidated sediments of the South African west coast. A total of 44 828 individuals from 469 taxa were identified from 48 sites representing 46.2 m2 of seafloor. Seven distinct macro-infaunal communities were defined through multivariate analyses and their key characteristic and distinguishing species were identified. These communities reflected five depth zones across the shelf, namely beach, inner shelf (10-42 m), middle shelf (60-142 m), outer shelf (150-357 m) and shelf edge (348-412 m). The processes driving the community structure of these depth zones were postulated to be tides, wave turbulence, seasonal hypoxia, habitat stability and homogeneity, and internal tides and/or shelf break upwelling, with drivers listed in order of increasing influence with depth. The middle shelf was further separated into three distinct communities based on sediment type, sediment organic carbon content and frequency of hypoxia. Variations in water turbulence, sediment grain size, upwelling-related variables and riverine sediment input were identified as the likely primary drivers of macro-infaunal community patterns. This chapter culminated in the development of a biotope classification based on the combination of macro-infaunal communities and their physical habitats (i.e. biotopes). South Africa has developed an expert-derived National Marine and Coastal Habitat (SANMC) Classification System which is used as a biodiversity surrogate in ecosystem assessment and spatial planning. This thesis tested the validity of this classification and the data derived Seascape classification against macro-infauna species abundance and biomass data in an effort to determine how well the different classifications represent macro-infaunal diversity of the west coast. These two classifications were also compared to the Biotope classification which combines macro-infaunal communities with their physical habitats. A canonical analysis of principle coordinates (CAP) was utilised to test the success with which each sample was allocated to the relevant habitat type in each classification. The total allocation success for each classification was used as a measure of effectiveness in terms of representing biodiversity patterns. Both classifications had similar allocation successes of 89-92 percent and 92-94 percent for the Seascape and National Habitat Classification respectively, but either over- or under-classified the macrofauna communities. The Biotope classification had the highest allocation success (98 percent), therefore it is the most accurate reflection of the macrofauna biodiversity patterns on the west coast. A key finding of this study was the increasing accuracy of classifications from physically- to expert- to biologically-derived habitat classifications. In this thesis, the Biotope classification was deemed the best representative of biodiversity patterns and was therefore used to produce the Biotope map for use in spatial assessment and planning. The distinct depth patterns that emerged in both the Seascape and Biotope classifications highlighted the need for further investigation of the relationship between depth and biodiversity. Despite variability in macro-infaunal communities, a general unifying pattern in biodiversity across the shelf was sought. Three relationships between depth and species richness have been described in the literature; namely a unimodal pattern, a positively linear relationship with depth, and no relationship between depth and species richness. These hypotheses were tested on the west coast. Two different species richness metrics were utilised to test the depth-diversity relationship, namely observed species density (spp.0.2m-2) and estimated species richness (spp.site-1). Observed species density increased from the beach to the shelf edge (350 m), then decreased to 412 m. The decline may have been due to difficulty in detecting species at greater depths as a result of sampling challenges. The inclusion of an innovative extrapolative method for estimating species richness (the capture-recapture heterogeneity model) within the Bayesian statistical framework mitigated the effects of species detection heterogeneity and revealed that species richness actually increased continuously across the shelf from beach to shelf edge. Thus the general relationship between depth and species richness is positively linear on the west coast of South Africa The new macro-infauna dataset and biotope map provided the opportunity to develop the first habitat-specific evidence-based conservation targets for unconsolidated sediments of the west coast. Species-Area Relationship (SAR) based conservation targets were developed for the biotopes using a modification of the generally accepted methodology. The accepted methodology has three steps (i) the estimation of total species richness for each habitat using the Bootstrap asymptotic estimator, (ii) the calculation of the slope of the species area curve (i.e. the z-value), and (iii) the calculation of targets representing 80 percent of the species. The inclusion of an innovative extrapolative species richness estimator, the Multi-species Site Occupancy Model (MSOM) provided better species richness estimation than the more conventional bootstrap species richness estimator, even though both are based on species accumulation. The MSOM, applied in the Bayesian statistical framework takes detectability of a species into account.
- Full Text:
- Date Issued: 2014
A study of carbonate-rich brines from Sua Pan to characterize organic contaminants in the soda ash process
- Authors: Joseph, Manjusha
- Date: 2001
- Subjects: Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4031 , http://hdl.handle.net/10962/d1004091 , Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Description: Botswana Ash (Pty) Ltd which is situated in Sua Pan, north east Bostwana, is one of Africa's largest suppliers of salt and soda ash. For a number of years, the company has been experiencing problems which have resulted in the final soda ash product being contaminated and discoloured. The problems experienced at Sua Pan have been reported also to occur in other salt works all over the world. It has been suggested that contamination in many salt works could be possibly be due to the microbial activity by halophilic algae and bacteria that grow in the solar ponds. This study was undertaken to investigate the nature of the contaminating organic compounds present in the brine, to identify the compounds, and to establish how these components vary during the various stages of the soda ash processing. For this study, two sets of brine samples were used; the first set was collected before the summer rains and the second set was collected after the summer rains. Solid bicarbonate and soda ash samples were also used. Extractions, desalting, UV and HPLC analysis and oxidative biotransformations using four enzymes, were used for developing profiles and characterizing the brine components. From these studies, we were able to confirm that the components of the brine are organic in nature. A thorough study of one of the compounds isolated,from solid bicarbonate and soda ash was conducted using UV, HPLC, IR, NMR, HPLC-MS, GC-MS and TLC. The results of these analyses, show that the. isolated compound was benzyl butyl phthalate which is generally regarded to be humic in nature. This compound was found to be present in all the brine samples collected after the summer rains including the well brine, suggesting this compound occurs naturally and is not formed during the processing.
- Full Text:
- Date Issued: 2001
- Authors: Joseph, Manjusha
- Date: 2001
- Subjects: Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4031 , http://hdl.handle.net/10962/d1004091 , Sua Pan Soda Ash Project -- Botswana , Sodium carbonate -- Research , Biotic communities , Organic compounds
- Description: Botswana Ash (Pty) Ltd which is situated in Sua Pan, north east Bostwana, is one of Africa's largest suppliers of salt and soda ash. For a number of years, the company has been experiencing problems which have resulted in the final soda ash product being contaminated and discoloured. The problems experienced at Sua Pan have been reported also to occur in other salt works all over the world. It has been suggested that contamination in many salt works could be possibly be due to the microbial activity by halophilic algae and bacteria that grow in the solar ponds. This study was undertaken to investigate the nature of the contaminating organic compounds present in the brine, to identify the compounds, and to establish how these components vary during the various stages of the soda ash processing. For this study, two sets of brine samples were used; the first set was collected before the summer rains and the second set was collected after the summer rains. Solid bicarbonate and soda ash samples were also used. Extractions, desalting, UV and HPLC analysis and oxidative biotransformations using four enzymes, were used for developing profiles and characterizing the brine components. From these studies, we were able to confirm that the components of the brine are organic in nature. A thorough study of one of the compounds isolated,from solid bicarbonate and soda ash was conducted using UV, HPLC, IR, NMR, HPLC-MS, GC-MS and TLC. The results of these analyses, show that the. isolated compound was benzyl butyl phthalate which is generally regarded to be humic in nature. This compound was found to be present in all the brine samples collected after the summer rains including the well brine, suggesting this compound occurs naturally and is not formed during the processing.
- Full Text:
- Date Issued: 2001
The nature and control of organic compounds in soda ash evaporate production
- Masemola, Patricia Mmoniemang
- Authors: Masemola, Patricia Mmoniemang
- Date: 2000
- Subjects: Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3902 , http://hdl.handle.net/10962/d1003961 , Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Description: Solar evaporite systems are man-managed ecosystems which are highly vulnerable to biological,physical and chemical disturbances. The problems encountered in such systems are in many cases found to be associated with the microbial ecology and the design of the system. This project focussed on investigating the nature of organic compounds contaminating soda ash produced at a solar evaporite production system located at Sua Pan in Botswana. Several years after the plant was commissioned, problems, including accumulation of total organic carbon (TOC) and discolouration of the soda ash product were encountered. The salt produced also retained high moisture content and was coloured pink. These phenomena impacted severely on the economic performance of the enterprise. This study was aimed at determining the origin and fate of these organic compounds within the system in order to elucidate the nature of the problem and also to conceptualise a remediation strategy suitable to reducing its impact. This was achieved by analysis of both dialysed and solvent extracts of the influent brine (well-brine), brine in the ponds (T-brine) and the bicarbonate filter cake. Although complete identification of the organic compounds isolated was not undertaken in this study, spectroscopic analysis of compounds isolated, by UV, IR, NMR and MS, strongly indicated that fulvic acids, a component of the influent well-brine organics, contribute to the organic contamination of the final product. Part of this component, however, is degraded during the ponding process. It was shown that an extracellular polysaccharide (EPS) produced by Dunaliella. spp., which proliferates in the evaporation ponds, contributes in a major way to the accumulation of TOC in the system. This was demonstrated by relating the sugar profile of carbohydrates isolated from the pond brine and final product, being arabinose, xylose, 2-o-methyl hexose, mannose, glucose and galactose. Studies reported show that EPS production was enhanced when algal cultures were exposed to stress conditions of high illumination, increasing salinity and temperature, and nitrogen limitation. Studies undertaken for the development of a remediation process for this system have shown that nutrient stripping and bacterial systems could be applied to deal with the dissolved TOC fraction, whereas adsorption systems could deal with the particulate fractions. Algal systems showed most potential for the removal of nutrients in the influent well-brine compared to chemical processes.Complete removal of ammonium and phosphorus removal efficiencies of pproximately 50% were achieved in an unoptimised pilot-scale Dunaliella-based HRAP. While similar effects were demonstrated for chemical processes, some economic constraints were noted. The potential of halophilic bacterial systems for the degradation of organic compounds in brine was also demonstrated. The limitations on the performance of such systems, associated with the low metabolic diversity, and poor immobilisation of physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product.halobacteria, however, were noted. Although physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product. Apart from a description of the microbial ecology of the ponds and the identification of major contributions to the TOC of the final product, a number of remediation strategies were evaluated and are described. These include chemical and biological stripping of nutrients sustaining microbial TOC production in the ponds, and also biological and physico-chemical processes for their removal once formed. Future studies to undertake the further development of these proposals has been described
- Full Text:
- Date Issued: 2000
- Authors: Masemola, Patricia Mmoniemang
- Date: 2000
- Subjects: Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3902 , http://hdl.handle.net/10962/d1003961 , Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Description: Solar evaporite systems are man-managed ecosystems which are highly vulnerable to biological,physical and chemical disturbances. The problems encountered in such systems are in many cases found to be associated with the microbial ecology and the design of the system. This project focussed on investigating the nature of organic compounds contaminating soda ash produced at a solar evaporite production system located at Sua Pan in Botswana. Several years after the plant was commissioned, problems, including accumulation of total organic carbon (TOC) and discolouration of the soda ash product were encountered. The salt produced also retained high moisture content and was coloured pink. These phenomena impacted severely on the economic performance of the enterprise. This study was aimed at determining the origin and fate of these organic compounds within the system in order to elucidate the nature of the problem and also to conceptualise a remediation strategy suitable to reducing its impact. This was achieved by analysis of both dialysed and solvent extracts of the influent brine (well-brine), brine in the ponds (T-brine) and the bicarbonate filter cake. Although complete identification of the organic compounds isolated was not undertaken in this study, spectroscopic analysis of compounds isolated, by UV, IR, NMR and MS, strongly indicated that fulvic acids, a component of the influent well-brine organics, contribute to the organic contamination of the final product. Part of this component, however, is degraded during the ponding process. It was shown that an extracellular polysaccharide (EPS) produced by Dunaliella. spp., which proliferates in the evaporation ponds, contributes in a major way to the accumulation of TOC in the system. This was demonstrated by relating the sugar profile of carbohydrates isolated from the pond brine and final product, being arabinose, xylose, 2-o-methyl hexose, mannose, glucose and galactose. Studies reported show that EPS production was enhanced when algal cultures were exposed to stress conditions of high illumination, increasing salinity and temperature, and nitrogen limitation. Studies undertaken for the development of a remediation process for this system have shown that nutrient stripping and bacterial systems could be applied to deal with the dissolved TOC fraction, whereas adsorption systems could deal with the particulate fractions. Algal systems showed most potential for the removal of nutrients in the influent well-brine compared to chemical processes.Complete removal of ammonium and phosphorus removal efficiencies of pproximately 50% were achieved in an unoptimised pilot-scale Dunaliella-based HRAP. While similar effects were demonstrated for chemical processes, some economic constraints were noted. The potential of halophilic bacterial systems for the degradation of organic compounds in brine was also demonstrated. The limitations on the performance of such systems, associated with the low metabolic diversity, and poor immobilisation of physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product.halobacteria, however, were noted. Although physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product. Apart from a description of the microbial ecology of the ponds and the identification of major contributions to the TOC of the final product, a number of remediation strategies were evaluated and are described. These include chemical and biological stripping of nutrients sustaining microbial TOC production in the ponds, and also biological and physico-chemical processes for their removal once formed. Future studies to undertake the further development of these proposals has been described
- Full Text:
- Date Issued: 2000
- «
- ‹
- 1
- ›
- »