BODIPY dyes for singlet oxygen and optical limiting applications
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
In silico analysis of human Hsp90 for the identification of novel anti-cancer drug target sites and natural compound inhibitors
- Authors: Penkler, David Lawrence
- Date: 2015
- Subjects: Heat shock proteins , Cancer -- Treatment , Molecular chaperones , Homeostasis , Carcinogenesis , Chemotherapy , Ligand binding (Biochemistry) , Protein-protein interactions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4162 , http://hdl.handle.net/10962/d1018938
- Description: The 90-KDa heat shock protein (Hsp90) is part of the molecular chaperone family, and as such it is involved in the regulation of protein homeostasis within cells. Specifically, Hsp90 aids in the folding of nascent proteins and re-folding of denatured proteins. It also plays an important role in the prevention of protein aggregation. Hsp90’s functionality is attributed to its several staged, multi-conformational ATPase cycle, in which associated client proteins are bound and released. Hsp90 is known to be associated with a wide array of client proteins, some of which are thought to be involved in multiple oncogenic processes. Indeed Hsp90 is known to be directly involved in perpetuating the stability and function of multiple mutated, chimeric and over-expressed signalling proteins that are known to promote the growth and survival of cancer cells. Hsp90 inhibitors are thus thought to be promising therapeutic agents for cancer treatment. A lack of a 3D structure of human Hsp90 however has restricted Hsp90 inhibitor development in large to in vivo investigations. This study, aims to investigate and calculate hypothetical homology models of the full human Hsp90 protein, and to probe these structural models for novel drug target sites using several in silico techniques. A multi-template homology modelling methodology was developed and in conjunction with protein-protein docking techniques, two functionally important human Hsp90 structural models were calculated; the nucleotide free “v-like” open and nucleotide bound closed conformations. Based on the conservation of ligand binding, virtual screening experiments conducted on both models using 316 natural compounds indigenous to South Africa, revealed three novel putative target sites. Two binding pockets in close association with important Hsp90-Hop interaction residues and a single binding pocket on the dimerization interface in the C-terminal domain. Targeted molecular docking experiments at these sites revealed two compounds (721395-11-5 and 264624-39-7) as putative inhibitors, both showing strong binding affinities for at least one of the three investigated target sites. Furthermore both compounds were found to only violate one Lipinski’s rules, suggesting their potential as candidates for further drug development. The combined work described here provides a putative platform for the development of next generation inhibitors of human Hsp90.
- Full Text:
- Authors: Penkler, David Lawrence
- Date: 2015
- Subjects: Heat shock proteins , Cancer -- Treatment , Molecular chaperones , Homeostasis , Carcinogenesis , Chemotherapy , Ligand binding (Biochemistry) , Protein-protein interactions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4162 , http://hdl.handle.net/10962/d1018938
- Description: The 90-KDa heat shock protein (Hsp90) is part of the molecular chaperone family, and as such it is involved in the regulation of protein homeostasis within cells. Specifically, Hsp90 aids in the folding of nascent proteins and re-folding of denatured proteins. It also plays an important role in the prevention of protein aggregation. Hsp90’s functionality is attributed to its several staged, multi-conformational ATPase cycle, in which associated client proteins are bound and released. Hsp90 is known to be associated with a wide array of client proteins, some of which are thought to be involved in multiple oncogenic processes. Indeed Hsp90 is known to be directly involved in perpetuating the stability and function of multiple mutated, chimeric and over-expressed signalling proteins that are known to promote the growth and survival of cancer cells. Hsp90 inhibitors are thus thought to be promising therapeutic agents for cancer treatment. A lack of a 3D structure of human Hsp90 however has restricted Hsp90 inhibitor development in large to in vivo investigations. This study, aims to investigate and calculate hypothetical homology models of the full human Hsp90 protein, and to probe these structural models for novel drug target sites using several in silico techniques. A multi-template homology modelling methodology was developed and in conjunction with protein-protein docking techniques, two functionally important human Hsp90 structural models were calculated; the nucleotide free “v-like” open and nucleotide bound closed conformations. Based on the conservation of ligand binding, virtual screening experiments conducted on both models using 316 natural compounds indigenous to South Africa, revealed three novel putative target sites. Two binding pockets in close association with important Hsp90-Hop interaction residues and a single binding pocket on the dimerization interface in the C-terminal domain. Targeted molecular docking experiments at these sites revealed two compounds (721395-11-5 and 264624-39-7) as putative inhibitors, both showing strong binding affinities for at least one of the three investigated target sites. Furthermore both compounds were found to only violate one Lipinski’s rules, suggesting their potential as candidates for further drug development. The combined work described here provides a putative platform for the development of next generation inhibitors of human Hsp90.
- Full Text:
A role for heat shock protein 90 (Hsp90) in fibronectin matrix dynamics
- Authors: O'Hagan, Kyle Leonard
- Date: 2013
- Subjects: Molecular chaperones , Heat shock proteins , Metastasis , Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4157 , http://hdl.handle.net/10962/d1018260
- Description: To date, a significant portion of research has been devoted to understanding the biological role of the molecular chaperone, heat shock protein 90 (Hsp90), in cancer development and metastasis. Studies have alluded to over 300 clients for intracellular Hsp90, many of which are involved in oncogenic signaling pathways, making Hsp90 a bone fide drug target with several inhibitors already in clinical trials. In recent years, a limited number of extracellular Hsp90 clients have been elucidated with roles in cancer cell migration and invasion. Examples of such clients include matrix metalloproteinase-2 (MMP-2), LRP-1/CD91 and HER-2. Inhibition of extracellular Hsp90 using cellimpermeable inhibitors has been shown to reduce cancer cell migration and metastasis by a hitherto undefined mechanism. Using surface biotinylation and an enzyme linked immunosorbent assay, we provided evidence to support that Hsp90 was found extracellularly in cancers of different origin, cell type and malignancy. Next, we isolated extracellular Hsp90-containing complexes from MDA-MB-231 breast cancer cells using a cell impermeable crosslinker followed by immunoprecipitation and identified by mass spectrometry that the extracellular matrix protein, fibronectin, co-precipitated with Hsp90β. This interaction between Hsp90β and fibronectin was confirmed using pull down assays and surface plasmon resonance spectroscopy with the purified proteins. The ability of exogenous Hsp90β to increase the insoluble fibronectin matrix in Hs578T breast cancer cells indicated a role for Hsp90 in fibronectin matrix stability or fibrillogenesis. Hsp90 knockdown by RNA interference or inhibition with the small molecule inhibitor, novobiocin, resulted in a dose and time-dependent reduction of the extracellular fibronectin matrix. Furthermore, novobiocin was shown to cause the internalization of a fluorescently-labeled exogenous fibronectin matrix incorporated into the extracellular matrix by Hs578T cells. This suggested endocytosis as a possible mechanism for fibronectin turnover. This was supported by the colocalization of fibronectin with key vesicular trafficking markers (Rab-5 and LAMP-1) in small, intracellular vesicles. Furthermore, treatment with the vesicular trafficking inhibitor, methyl-β-cyclodextrin, resulted in a dose-dependent recovery in the extracellular fibronectin matrix following treatment with novobiocin. Taken together, these data provided the first evidence to suggest fibronectin as a new client of Hsp90 and that Hsp90 was involved in regulating extracellular fibronectin matrix dynamics.
- Full Text:
- Authors: O'Hagan, Kyle Leonard
- Date: 2013
- Subjects: Molecular chaperones , Heat shock proteins , Metastasis , Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4157 , http://hdl.handle.net/10962/d1018260
- Description: To date, a significant portion of research has been devoted to understanding the biological role of the molecular chaperone, heat shock protein 90 (Hsp90), in cancer development and metastasis. Studies have alluded to over 300 clients for intracellular Hsp90, many of which are involved in oncogenic signaling pathways, making Hsp90 a bone fide drug target with several inhibitors already in clinical trials. In recent years, a limited number of extracellular Hsp90 clients have been elucidated with roles in cancer cell migration and invasion. Examples of such clients include matrix metalloproteinase-2 (MMP-2), LRP-1/CD91 and HER-2. Inhibition of extracellular Hsp90 using cellimpermeable inhibitors has been shown to reduce cancer cell migration and metastasis by a hitherto undefined mechanism. Using surface biotinylation and an enzyme linked immunosorbent assay, we provided evidence to support that Hsp90 was found extracellularly in cancers of different origin, cell type and malignancy. Next, we isolated extracellular Hsp90-containing complexes from MDA-MB-231 breast cancer cells using a cell impermeable crosslinker followed by immunoprecipitation and identified by mass spectrometry that the extracellular matrix protein, fibronectin, co-precipitated with Hsp90β. This interaction between Hsp90β and fibronectin was confirmed using pull down assays and surface plasmon resonance spectroscopy with the purified proteins. The ability of exogenous Hsp90β to increase the insoluble fibronectin matrix in Hs578T breast cancer cells indicated a role for Hsp90 in fibronectin matrix stability or fibrillogenesis. Hsp90 knockdown by RNA interference or inhibition with the small molecule inhibitor, novobiocin, resulted in a dose and time-dependent reduction of the extracellular fibronectin matrix. Furthermore, novobiocin was shown to cause the internalization of a fluorescently-labeled exogenous fibronectin matrix incorporated into the extracellular matrix by Hs578T cells. This suggested endocytosis as a possible mechanism for fibronectin turnover. This was supported by the colocalization of fibronectin with key vesicular trafficking markers (Rab-5 and LAMP-1) in small, intracellular vesicles. Furthermore, treatment with the vesicular trafficking inhibitor, methyl-β-cyclodextrin, resulted in a dose-dependent recovery in the extracellular fibronectin matrix following treatment with novobiocin. Taken together, these data provided the first evidence to suggest fibronectin as a new client of Hsp90 and that Hsp90 was involved in regulating extracellular fibronectin matrix dynamics.
- Full Text:
The role of Hsp90/Hsp70 organising protein (Hop) in the Proliferation, Survival and Migration of Breast Cancer Cells.
- Authors: Willmer, Tarryn
- Date: 2012
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4130 , http://hdl.handle.net/10962/d1015720
- Description: Hop (the Hsp90/Hsp70 organising protein) is a co-chaperone that acts as an adapter between the major molecular chaperones Hsp90 and Hsp70 during the cellular assembly of the Hsp90 complex. The Hsp90 complex regulates the stability and conformational maturation of a range of important cellular proteins, many of which are deregulated in cancer. In this study, we hypothesised that Hop knockdown inhibits proliferation and migration of cancer cells. We characterised the expression of Hop in cell models of different cancerous status, and provided evidence that Hop was upregulated in tumour cells compared to normal cell counterparts. Using an RNA interference approach, a 60-90% knockdown of Hop was achieved for up to 144 hours in the MDA-MB-231 and Hs578T breast cancer cell lines. Hop knockdown resulted in downregulation of the Hsp90 client proteins, Akt and Stat3, as well as a change in the expression of other Hsp90 co-chaperones, p23, Cdc37 and Aha1, while no change in the levels of Hsp90 or Hsp70 was observed. Silencing of Hop impaired cell proliferation in Hs578T cells but an increase in proliferation in MDA-MB-231, suggesting that the role of Hop in cancer cell proliferation was dependent on type of cancer cell. Hop knockdown in Hs578T and MDA-MB- 231 cells did not lead to any significant changes in the half maximal inhibitory concentrations (IC50) of selected small molecule inhibitors (paclitaxel, geldanamycin and novobiocin) in these cell lines after 72 hours. Hop knockdown cells were however, more sensitive than control cells to the Hsp90 inhibitors geldanamycin and novobiocin at earlier time points and in the presence of the drug transporter inhibitor, verapamil. Hop knockdown caused a decrease in cell migration as measured by the wound healing assay in both Hs578T and MDA-MB-231 cells. Hop was present in purified pseudopodia fractions of migrating cells, and immunofluorescence analysis showed that Hop colocalised with actin at the leading edges of pseudopodia, points of adhesion and at intercellular junctions of cells that have been stimulated to migrate with the chemokine stromal derived factor-1. Hop was able to bind to actin in vitro using actin cosedimentation assays, and silencing of Hop dramatically reduced the capacity of Hs578T cells to form pseudopodia. These results establish a correlation between Hop and actin dynamics, pseudopodia formation and migration in the context of Hop silencing, and collectively suggest that Hop plays a role in cancer cell migration. This study presents experimental evidence for a promising alternative to targeting Hsp90 and Hsp70 chaperones, a novel drug target in cancer therapy.
- Full Text:
- Authors: Willmer, Tarryn
- Date: 2012
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4130 , http://hdl.handle.net/10962/d1015720
- Description: Hop (the Hsp90/Hsp70 organising protein) is a co-chaperone that acts as an adapter between the major molecular chaperones Hsp90 and Hsp70 during the cellular assembly of the Hsp90 complex. The Hsp90 complex regulates the stability and conformational maturation of a range of important cellular proteins, many of which are deregulated in cancer. In this study, we hypothesised that Hop knockdown inhibits proliferation and migration of cancer cells. We characterised the expression of Hop in cell models of different cancerous status, and provided evidence that Hop was upregulated in tumour cells compared to normal cell counterparts. Using an RNA interference approach, a 60-90% knockdown of Hop was achieved for up to 144 hours in the MDA-MB-231 and Hs578T breast cancer cell lines. Hop knockdown resulted in downregulation of the Hsp90 client proteins, Akt and Stat3, as well as a change in the expression of other Hsp90 co-chaperones, p23, Cdc37 and Aha1, while no change in the levels of Hsp90 or Hsp70 was observed. Silencing of Hop impaired cell proliferation in Hs578T cells but an increase in proliferation in MDA-MB-231, suggesting that the role of Hop in cancer cell proliferation was dependent on type of cancer cell. Hop knockdown in Hs578T and MDA-MB- 231 cells did not lead to any significant changes in the half maximal inhibitory concentrations (IC50) of selected small molecule inhibitors (paclitaxel, geldanamycin and novobiocin) in these cell lines after 72 hours. Hop knockdown cells were however, more sensitive than control cells to the Hsp90 inhibitors geldanamycin and novobiocin at earlier time points and in the presence of the drug transporter inhibitor, verapamil. Hop knockdown caused a decrease in cell migration as measured by the wound healing assay in both Hs578T and MDA-MB-231 cells. Hop was present in purified pseudopodia fractions of migrating cells, and immunofluorescence analysis showed that Hop colocalised with actin at the leading edges of pseudopodia, points of adhesion and at intercellular junctions of cells that have been stimulated to migrate with the chemokine stromal derived factor-1. Hop was able to bind to actin in vitro using actin cosedimentation assays, and silencing of Hop dramatically reduced the capacity of Hs578T cells to form pseudopodia. These results establish a correlation between Hop and actin dynamics, pseudopodia formation and migration in the context of Hop silencing, and collectively suggest that Hop plays a role in cancer cell migration. This study presents experimental evidence for a promising alternative to targeting Hsp90 and Hsp70 chaperones, a novel drug target in cancer therapy.
- Full Text:
The synthesis and breast cancer inhibitory activity of cinnamic acid analogues based on the halogenated monoterpene pharmacophore
- Authors: Chiwakata, Maynard Tendai
- Date: 2012
- Subjects: Halocarbons , Cancer -- Treatment , Breast -- Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3866 , http://hdl.handle.net/10962/d1016129
- Description: Breast cancer is one of the leading causes of death, with mortality rate estimates of 465 000 deaths per annum. It is estimated that 1.3 million women are diagnosed with the disease each year especially in the developing countries. Current chemotherapy relies on the use of high doses of non-specific toxic agents that possess adverse side effects and compromise patient’s compliance and adherence to treatment. Paclitaxel, one of the common drugs used in breast cancer chemotherapy results in sensory and motor neuropathy, whilst hormonal therapy e.g. Herceptin causes severe cardiovascular, gastrointestinal and cutaneous side effects. There has been a demand in developing newer cancer agents that demonstrate selective cytoxicity with minimal effect on normal body tissue. Numerous studies have shown that marine organisms produce a wide range of halogenated compounds that possess cytotoxic properties, and hence can be a source of new drug hits or leads for cancer therapy. Halomon, a polyhalogenated monoterpene from Portieria hornemannii, displayed interesting activity against brain, renal and lung cancer tumours with selective/differential cytotoxicity. This inspired us to focus our project on halogenated monoterpenes isolated from the same Rhodophyta class as P. hornemannii but with particular attention to Plocamium species. Several metabolites have been isolated from P. cornutum, P. corallorhiza and P. suhrii that possess interesting cytotoxicities against a breast cancer cell line (MCF7) and an oesophageal cancer line (WHCO1). The aim of the project was therefore centred at isolating target compounds for preliminary structure-activity studies against a breast cancer cell line, and use this information to synthesize a series of analogues that are more stable than the natural products and yet as active using a fragment-based type approach to map out pharmacophoric elements. Five metabolites were isolated from P. cornutum and five from P. corallorhiza. Cell-based assays were conducted using an MTT assay kit against MCF7 and MDA-MB-231 breast cancer cell lines and (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene, isolated from P. cornutum was the most active with IC50 values of 3.0 μM and 6.15 μM respectively. Introduction of a terminal aromatic ring to enhance stability, together with varying substituents (H, CH3, CF3, Br, CN, CHO, CHCl2) on position 7 of the molecule, gave rise to a series of cinnamate ester derivatives inspired by (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene. The analogues were synthesized from their benzaldehyde precursors via Aldol condensation, esterification and Wittig reactions. Their carboxylic acid counterparts were synthesized by hydrolysis of the parent esters in an attempt to promote water solubilities of the analogues. Biological activity assays were then conducted with the cinnamate analogues against the MDA-MB-231 breast cancer cell line using an MTT assay kit. Ester derivatives with -CHO and -CHCl2 functionalities had IC50 values of 43.45 μM and 100.01 μM respectively whilst the other ester derivatives were inactive. It was concluded that either an aldehyde (-CHO) or gem-dichlorides (-CHCl2) is specifically required for cytotoxic activity to be observed. None of the carboxylic acids were active which could have been due to failure of the compounds to enter the breast cancer cells and reach the target site because of their polar nature. Compounds with -CHO and -CHCl2 functionalities were therefore selected for future SARs studies.
- Full Text:
- Authors: Chiwakata, Maynard Tendai
- Date: 2012
- Subjects: Halocarbons , Cancer -- Treatment , Breast -- Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3866 , http://hdl.handle.net/10962/d1016129
- Description: Breast cancer is one of the leading causes of death, with mortality rate estimates of 465 000 deaths per annum. It is estimated that 1.3 million women are diagnosed with the disease each year especially in the developing countries. Current chemotherapy relies on the use of high doses of non-specific toxic agents that possess adverse side effects and compromise patient’s compliance and adherence to treatment. Paclitaxel, one of the common drugs used in breast cancer chemotherapy results in sensory and motor neuropathy, whilst hormonal therapy e.g. Herceptin causes severe cardiovascular, gastrointestinal and cutaneous side effects. There has been a demand in developing newer cancer agents that demonstrate selective cytoxicity with minimal effect on normal body tissue. Numerous studies have shown that marine organisms produce a wide range of halogenated compounds that possess cytotoxic properties, and hence can be a source of new drug hits or leads for cancer therapy. Halomon, a polyhalogenated monoterpene from Portieria hornemannii, displayed interesting activity against brain, renal and lung cancer tumours with selective/differential cytotoxicity. This inspired us to focus our project on halogenated monoterpenes isolated from the same Rhodophyta class as P. hornemannii but with particular attention to Plocamium species. Several metabolites have been isolated from P. cornutum, P. corallorhiza and P. suhrii that possess interesting cytotoxicities against a breast cancer cell line (MCF7) and an oesophageal cancer line (WHCO1). The aim of the project was therefore centred at isolating target compounds for preliminary structure-activity studies against a breast cancer cell line, and use this information to synthesize a series of analogues that are more stable than the natural products and yet as active using a fragment-based type approach to map out pharmacophoric elements. Five metabolites were isolated from P. cornutum and five from P. corallorhiza. Cell-based assays were conducted using an MTT assay kit against MCF7 and MDA-MB-231 breast cancer cell lines and (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene, isolated from P. cornutum was the most active with IC50 values of 3.0 μM and 6.15 μM respectively. Introduction of a terminal aromatic ring to enhance stability, together with varying substituents (H, CH3, CF3, Br, CN, CHO, CHCl2) on position 7 of the molecule, gave rise to a series of cinnamate ester derivatives inspired by (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene. The analogues were synthesized from their benzaldehyde precursors via Aldol condensation, esterification and Wittig reactions. Their carboxylic acid counterparts were synthesized by hydrolysis of the parent esters in an attempt to promote water solubilities of the analogues. Biological activity assays were then conducted with the cinnamate analogues against the MDA-MB-231 breast cancer cell line using an MTT assay kit. Ester derivatives with -CHO and -CHCl2 functionalities had IC50 values of 43.45 μM and 100.01 μM respectively whilst the other ester derivatives were inactive. It was concluded that either an aldehyde (-CHO) or gem-dichlorides (-CHCl2) is specifically required for cytotoxic activity to be observed. None of the carboxylic acids were active which could have been due to failure of the compounds to enter the breast cancer cells and reach the target site because of their polar nature. Compounds with -CHO and -CHCl2 functionalities were therefore selected for future SARs studies.
- Full Text:
Expression of heat shock proteins on the plasma membrane of cancer cells : a potential multi-chaperone complex that mediates migration
- Authors: Kenyon, Amy
- Date: 2011 , 2011-03-29
- Subjects: Heat shock proteins , Protein folding , Molecular chaperones , Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4122 , http://hdl.handle.net/10962/d1013362
- Description: Current dogma suggests that the Heat Shock Protein (Hsp) molecular chaperones and associated co-chaperones function primarily within the cell, although growing evidence suggests a role for these proteins on the plasma membrane of cancer cells. Hsp90 does not function independently in vivo, but instead functions with a variety of partner chaperones and co-chaperones, that include Hsp70 and Hsp90/Hsp70 organising protein (Hop), which are thought to regulate ATP hydrolysis and the binding of Hsp90 to its client proteins. Hsp90 on the plasma membrane appears to have distinct roles in pathways leading to cell motility, invasion and metastasis. We hypothesised that Hsp90 on the plasma membrane is present as part of a multi-chaperone complex that participates in the chaperone-assisted folding of client membrane proteins in a manner analogous to the intracellular chaperone complex. This study characterised the membrane expression of Hsp90, Hsp70 and Hop in different cell models of different adhesive and migratory capacity, namely MDA-MB-231 (metastatic adherent breast cancer cell line), MCF-7 (non-metastatic adherent breast cancer cell line), U937 and THP1 (monocytic leukemia suspension cell lines). Membrane expression of the Hsps was analysed using a combination of subcellular fractionation, biotin-streptavidin affinity purification and immunofluorescence. This study provided evidence to suggest that Hsp90, Hsp70 and Hop are membrane associated in MDA-MB-231 and MCF-7 breast cancer cells. Hsp90, Hsp70 and Hop associated with the plasma membrane such that at least part of the protein is located extracellularly. Immunofluorescence analysis showed that Hsp90, Hsp70 and Hop at the leading edge may localize to membrane ruffles in MDA-MB-231 cells, in accordance with the published role of Hsp90 in migration. An increase in this response was seen in cells stimulated to migrate with SDF-1. By immunoprecipitation, we isolated a putative extracellular membrane associated complex containing Hsp90, Hsp70 and Hop. Using soluble Hsp90 and antibodies against membrane associated Hsp90, we suggested roles for soluble extracellular Hsp90 in mediating migration by wound healing assays and inducing actin reorganisation and vinculin-based focal adhesion formation. The effects of extracellular Hsp90 are mediated by signalling through an ERK1/2 dependent pathway. An anti-Hsp90 antibody against an N-terminal epitope in Hsp90 appeared to be able to overcome the death inducing effects of a combination of SDF-1 and AMD3100, while soluble Hsp90 could not overcome this effect. We propose that this study provides preliminary evidence that extracellular Hsp90 functions as part of a multi-chaperone complex that includes Hsp70 and Hop. The extracellular Hsp90 chaperone complex may mediate cell processes such as migration by modulating the conformation of cell surface receptors, leading to downstream signalling.
- Full Text:
- Authors: Kenyon, Amy
- Date: 2011 , 2011-03-29
- Subjects: Heat shock proteins , Protein folding , Molecular chaperones , Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4122 , http://hdl.handle.net/10962/d1013362
- Description: Current dogma suggests that the Heat Shock Protein (Hsp) molecular chaperones and associated co-chaperones function primarily within the cell, although growing evidence suggests a role for these proteins on the plasma membrane of cancer cells. Hsp90 does not function independently in vivo, but instead functions with a variety of partner chaperones and co-chaperones, that include Hsp70 and Hsp90/Hsp70 organising protein (Hop), which are thought to regulate ATP hydrolysis and the binding of Hsp90 to its client proteins. Hsp90 on the plasma membrane appears to have distinct roles in pathways leading to cell motility, invasion and metastasis. We hypothesised that Hsp90 on the plasma membrane is present as part of a multi-chaperone complex that participates in the chaperone-assisted folding of client membrane proteins in a manner analogous to the intracellular chaperone complex. This study characterised the membrane expression of Hsp90, Hsp70 and Hop in different cell models of different adhesive and migratory capacity, namely MDA-MB-231 (metastatic adherent breast cancer cell line), MCF-7 (non-metastatic adherent breast cancer cell line), U937 and THP1 (monocytic leukemia suspension cell lines). Membrane expression of the Hsps was analysed using a combination of subcellular fractionation, biotin-streptavidin affinity purification and immunofluorescence. This study provided evidence to suggest that Hsp90, Hsp70 and Hop are membrane associated in MDA-MB-231 and MCF-7 breast cancer cells. Hsp90, Hsp70 and Hop associated with the plasma membrane such that at least part of the protein is located extracellularly. Immunofluorescence analysis showed that Hsp90, Hsp70 and Hop at the leading edge may localize to membrane ruffles in MDA-MB-231 cells, in accordance with the published role of Hsp90 in migration. An increase in this response was seen in cells stimulated to migrate with SDF-1. By immunoprecipitation, we isolated a putative extracellular membrane associated complex containing Hsp90, Hsp70 and Hop. Using soluble Hsp90 and antibodies against membrane associated Hsp90, we suggested roles for soluble extracellular Hsp90 in mediating migration by wound healing assays and inducing actin reorganisation and vinculin-based focal adhesion formation. The effects of extracellular Hsp90 are mediated by signalling through an ERK1/2 dependent pathway. An anti-Hsp90 antibody against an N-terminal epitope in Hsp90 appeared to be able to overcome the death inducing effects of a combination of SDF-1 and AMD3100, while soluble Hsp90 could not overcome this effect. We propose that this study provides preliminary evidence that extracellular Hsp90 functions as part of a multi-chaperone complex that includes Hsp70 and Hop. The extracellular Hsp90 chaperone complex may mediate cell processes such as migration by modulating the conformation of cell surface receptors, leading to downstream signalling.
- Full Text:
The role of Hsp90 in the Wnt pathway of MCF7 breast cancer cells
- Authors: Cooper, Leanne Claire
- Date: 2011
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Molecular chaperones
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3985 , http://hdl.handle.net/10962/d1004044 , Cancer -- Treatment , Heat shock proteins , Cancer cells , Molecular chaperones
- Description: Breast cancer is one of the most common forms of cancer in not only South African women, but women all over the world. The molecular chaperone heat shock protein 90 (HSP90) is upregulated in cancer and is almost exclusively associated with proteins involved in intracellular signal transduction, thus it plays an important role in signalling pathways within the cell. In cancer, there is an aberrant activation of the Wnt signaling pathway, which results in stabilized β-catenin being able to translocate to the nucleus where it can trigger the transcription of oncogenes found to be involved in the self-renewal of cells. The level of β-catenin is usually kept in check by a destruction complex comprising glycogen synthase kinase 3-beta (GSK-3β), axin1, adenomatous polyposis coli (APC) which phosphorylate β-catenin, resulting in its ubiquitination and degradation. HSP90 has been found to be associated with GSK-3β, but whether this association is only transient is debatable. Very little is known about the association of HSP90 with other members of the Wnt pathway in breast cancer. In this study, we have attempted to further identify the direct associations between HSP90 and GSK-3β, β-catenin, p-β-catenin and axin1. Immunofluorescence and confocal microscopy co-localization studies suggested a potential association between HSP90 and these proteins. Treatment with HSP90 inhibitors, 17-AAG and novobiocin resulted in a shift of axin1 to what appeared to be the plasma membrane. The associations of HSP90 with GSK-3β, β-catenin, p-β-catenin and axin1 were confirmed biochemically by co-immunoprecipitation and inhibition using 17-AAG, geldanamycin and novobiocin. We showed, for the first time that HSP90 is associated in a possible complex with β-catenin, p-β-catenin and axin1 therefore is potentially involved in the modulation of p-β-catenin in the Wnt pathway through the stabilization of the destruction complex.
- Full Text:
- Authors: Cooper, Leanne Claire
- Date: 2011
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Molecular chaperones
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3985 , http://hdl.handle.net/10962/d1004044 , Cancer -- Treatment , Heat shock proteins , Cancer cells , Molecular chaperones
- Description: Breast cancer is one of the most common forms of cancer in not only South African women, but women all over the world. The molecular chaperone heat shock protein 90 (HSP90) is upregulated in cancer and is almost exclusively associated with proteins involved in intracellular signal transduction, thus it plays an important role in signalling pathways within the cell. In cancer, there is an aberrant activation of the Wnt signaling pathway, which results in stabilized β-catenin being able to translocate to the nucleus where it can trigger the transcription of oncogenes found to be involved in the self-renewal of cells. The level of β-catenin is usually kept in check by a destruction complex comprising glycogen synthase kinase 3-beta (GSK-3β), axin1, adenomatous polyposis coli (APC) which phosphorylate β-catenin, resulting in its ubiquitination and degradation. HSP90 has been found to be associated with GSK-3β, but whether this association is only transient is debatable. Very little is known about the association of HSP90 with other members of the Wnt pathway in breast cancer. In this study, we have attempted to further identify the direct associations between HSP90 and GSK-3β, β-catenin, p-β-catenin and axin1. Immunofluorescence and confocal microscopy co-localization studies suggested a potential association between HSP90 and these proteins. Treatment with HSP90 inhibitors, 17-AAG and novobiocin resulted in a shift of axin1 to what appeared to be the plasma membrane. The associations of HSP90 with GSK-3β, β-catenin, p-β-catenin and axin1 were confirmed biochemically by co-immunoprecipitation and inhibition using 17-AAG, geldanamycin and novobiocin. We showed, for the first time that HSP90 is associated in a possible complex with β-catenin, p-β-catenin and axin1 therefore is potentially involved in the modulation of p-β-catenin in the Wnt pathway through the stabilization of the destruction complex.
- Full Text:
Marine biotechnology : evaluation and development of methods for the discovery of natural products from fungi
- Authors: Pather, Simisha
- Date: 2005 , 2013-06-18
- Subjects: Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3839 , http://hdl.handle.net/10962/d1007652 , Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Description: One of the major impediments in the development of marine natural products is the provision of biologically active natural products in sufficient quantity for complete pharmacological evaluation, clinical trials and eventual commercial production. Marine microorganisms show great promise in providing a renewable source of biologically active natural products. The main aim of this study was to develop and evaluate methods for the isolation, identification and cultivation of marine fungi from the South African marine environment for the production of biologically active secondary metabolites. Twenty-four species of fungi were isolated from marine algae collected from the intertidal zone near Port Alfred, South Africa. The fungi were cultivated in small-scale under static and agitated conditions and their crude intra- and extracellular organic extracts were screened by ¹H NMR and a series of bioassays. Using this as a basis, one isolate was selected for further study. By analyses of the lTS1 region of the ribosomal DNA, the fungal isolate was identified as a marine-derived isolate of Eurotium rubrum (Aspergillus ruber). Although E. rubrum has been isolated from the marine environment, no investigations have been undertaken to determine the adaptation of these isolates to the marine environment. In order to optimise productivity, creativity and incubation time, the fungus was cultivated in small-scale using a variety of carbon (glucose, fructose, lactose, sucrose, marmitol and maltose) and nitrogen sources (ammonium tartrate, urea, peptone and yeast extract). An HPLC-DAD method was developed to assess the metabolic creativity and productivity under different fermentation conditions. Distinctive variations in the range and yield of metabolites produced as well as morphology and growth time were observed. The crude extracts from all fermentations were combined and six known compounds were isolated by reversed-phase chromatography and their structures elucidated by spectroscopic techniques. The known compounds were fIavoglaucin, aspergin, isodihydroauroglaucin, isotetrahydroauroglaucin, neoechinuline A and physcion. Neoechinuline A, isodihydroauroglaucin and isotetrahydroauroglaucin showed activity against oesophageal and cervical cancer cell lines.
- Full Text:
- Authors: Pather, Simisha
- Date: 2005 , 2013-06-18
- Subjects: Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3839 , http://hdl.handle.net/10962/d1007652 , Marine biotechnology , Marine fungi -- South Africa , Natural products -- South Africa , Marine plants -- South Africa , Marine metabolites -- South Africa , Cancer -- Treatment , DNA
- Description: One of the major impediments in the development of marine natural products is the provision of biologically active natural products in sufficient quantity for complete pharmacological evaluation, clinical trials and eventual commercial production. Marine microorganisms show great promise in providing a renewable source of biologically active natural products. The main aim of this study was to develop and evaluate methods for the isolation, identification and cultivation of marine fungi from the South African marine environment for the production of biologically active secondary metabolites. Twenty-four species of fungi were isolated from marine algae collected from the intertidal zone near Port Alfred, South Africa. The fungi were cultivated in small-scale under static and agitated conditions and their crude intra- and extracellular organic extracts were screened by ¹H NMR and a series of bioassays. Using this as a basis, one isolate was selected for further study. By analyses of the lTS1 region of the ribosomal DNA, the fungal isolate was identified as a marine-derived isolate of Eurotium rubrum (Aspergillus ruber). Although E. rubrum has been isolated from the marine environment, no investigations have been undertaken to determine the adaptation of these isolates to the marine environment. In order to optimise productivity, creativity and incubation time, the fungus was cultivated in small-scale using a variety of carbon (glucose, fructose, lactose, sucrose, marmitol and maltose) and nitrogen sources (ammonium tartrate, urea, peptone and yeast extract). An HPLC-DAD method was developed to assess the metabolic creativity and productivity under different fermentation conditions. Distinctive variations in the range and yield of metabolites produced as well as morphology and growth time were observed. The crude extracts from all fermentations were combined and six known compounds were isolated by reversed-phase chromatography and their structures elucidated by spectroscopic techniques. The known compounds were fIavoglaucin, aspergin, isodihydroauroglaucin, isotetrahydroauroglaucin, neoechinuline A and physcion. Neoechinuline A, isodihydroauroglaucin and isotetrahydroauroglaucin showed activity against oesophageal and cervical cancer cell lines.
- Full Text:
Cimetidine as a free radical scavenger
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- Authors: Lambat, Zaynab Yusuf
- Date: 2003
- Subjects: Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3766 , http://hdl.handle.net/10962/d1003244 , Cimetidine , Cimetidine -- Physiological effect , Cimetidine -- Therapeutic use , Alzheimer's disease -- Treatment , Cancer -- Treatment , Free radicals (Chemistry) -- Physiological effect
- Description: The present study was undertaken to determine the effects and possible mechanism of action of cimetidine in cancer and Alzheimer’s disease (AD). Throughout this study emphasis is placed on free radical levels since the magnitude of the relationship between diseases and the levels of free radicals vary from one disease to another. Studies were carried out to examine the effect of cimetidine on free radical levels using superoxide formation and lipid peroxidation as indicators of free radical levels. The experiments revealed that addition of cimetidine, especially in high concentrations (0.5 and 1.0 x10-6 M) significantly inhibited WHCO6 cancer cell growth rather than cancer cell growth, as no normal control was available. Free radical formation as well as hydroxyl radical formation were reduced in the deoxyribose assay. In addition, cimetidine exhibits properties of binding to metals such as copper and iron. To maintain consistency in the experiments, a WHCO6 (Wits Human Carcinoma of the Oesophagus) cell line was used to investigate the effect of cimetidine in cancer. Neurodegeneration was induced in the rat brain using neurotoxins such as cyanide to investigate the relationship between cimetidine in AD. A decrease in cancer cell growth was accompanied by a concomitant decrease in the levels of free radicals and lipid peroxidation, suggesting that the growth-inhibitory effects of cimetidine on WHCO6 cancer cells in vitro may be due to free radical scavenging properties. This proposal was further strengthened by determination of free radical levels in the rat brain. After treatment with neurotoxins to induce neurodegeneration, the levels of free radicals in the rat brain suggest that addition of cimetidine reduces free radical levels in the rat brain in a dosedependent manner. Further experiments were done in an attempt to uncover the underlying mechanism by which cimetidine exhibits free radical scavenging properties. Metal binding studies were done using electrochemical, HPLC and UV/Vis studies. The results show that cimetidine binds iron and copper. These metals have been implicated in free radical production via the Fenton reaction. By binding with cimetidine the metals become unavailable to produce free radicals and hence cimetidine indirectly reduces the formation of free radicals. The final experiment was the determination of cimetidine as a hydroxyl radical scavenger in the deoxyribose assay. Cimetidine was shown to act as a potent hydroxyl radical scavenger, thereby confirming its activity as a free radical scavenger. In addition, cimetidine protects against damage to the deoxyribose sugar, a component of DNA. Whilst there are many theories that explain the therapeutic role of cimetidine in degenerative disease, the actual mechanism of the role of cimetidine is emphasized as a free radical scavenger. Regardless of the mechanism of action, cimetidine does inhibit tumour growth according to this study and also reduce free radical levels in neurodegeneration, which suggests a role for cimetidine as a possible additive in treatment of patients with such disease states. These findings have important clinical implications, and needs to be investigated further.
- Full Text:
- «
- ‹
- 1
- ›
- »