Synthesis, characterisation and evaluation of ferrocene-containing Novobiocin analogues for anticancer and antiplasmodial activity through inhibition of Hsp90
- Authors: Mbaba, Mziyanda
- Date: 2017
- Subjects: Antibiotics Synthesis , Ferrocene , Heat shock proteins , Antimalarials , Cancer Chemotherapy
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65111 , vital:28690
- Description: Novobiocin (Nb) is a coumarin type antibiotic isolated from the bacterium species of Streptomyces and possesses modest anticancer and antimalarial activities. Nb and analogues have been extensively explored as potential anticancer agents through inhibition of the C- terminal domain of heat shock protein 90 (Hsp90), which plays a pivotal role in the proteinfolding machinery of cells. There has been little effort in the exploration of Nb and derivatives for antimalarial activity. Incorporation of organometallic units, such as ferrocene (Fc), into bioactive chemical scaffolds remains an attractive approach for developing new therapeutic agents for treatment of several ailments. The current study sought to investigate the anticancer and antiplasmodial effects of incorporating ferrocene (Fc) into Nb scaffold presumably through inhibition of Hsp90. The ferrocenyl Nb analogues containing simplified structural motifs such as phenyl, benzyl, and piperidine were synthesized in six to nine steps employing conventional synthetic organic protocols adapted from literature, and the compounds were accessed in reasonable yields. For comparison purposes, a selection of organic Nb analogues were also included in the study. The target compounds were characterized by spectroscopic techniques including 1-dimensional nuclear magnetic resonance (1D NMR) and high-resolution mass spectroscopy. The synthesized compounds were evaluated in vitro for potential anticancer and antiplasmodial activities using the breast cancer cell line (HCC38) and chloroquine-sensitive strain (3D7) of the malaria parasite, Plasmodium falciparum. The presence of the Fc unit was found to enhance both anticancer and antiplasmodial activities of the resultant ferrocenyl Nb compounds with IC50 values in the low to mid micromolar range. Hsp90 inhibitory studies of the ferrocenyl Nb analogues possessing superior activities (2.13a and 2.20c) were also conducted using different yeast strains expressing both human and malarial Hsp90 isoforms: hHsp90a/p and PfHsp90, respectively. The results of Hsp90 inhibitory studies suggested no direct correlation between the observed activities of the analogues and Hsp90 inhibition. However, since the conditions of the assay were not optimised due to time constrains of the project, these observed data remained to be confirmed. , Thesis (MSc) -- Faculty of Science, Chemistry, 2017
- Full Text:
- Authors: Mbaba, Mziyanda
- Date: 2017
- Subjects: Antibiotics Synthesis , Ferrocene , Heat shock proteins , Antimalarials , Cancer Chemotherapy
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65111 , vital:28690
- Description: Novobiocin (Nb) is a coumarin type antibiotic isolated from the bacterium species of Streptomyces and possesses modest anticancer and antimalarial activities. Nb and analogues have been extensively explored as potential anticancer agents through inhibition of the C- terminal domain of heat shock protein 90 (Hsp90), which plays a pivotal role in the proteinfolding machinery of cells. There has been little effort in the exploration of Nb and derivatives for antimalarial activity. Incorporation of organometallic units, such as ferrocene (Fc), into bioactive chemical scaffolds remains an attractive approach for developing new therapeutic agents for treatment of several ailments. The current study sought to investigate the anticancer and antiplasmodial effects of incorporating ferrocene (Fc) into Nb scaffold presumably through inhibition of Hsp90. The ferrocenyl Nb analogues containing simplified structural motifs such as phenyl, benzyl, and piperidine were synthesized in six to nine steps employing conventional synthetic organic protocols adapted from literature, and the compounds were accessed in reasonable yields. For comparison purposes, a selection of organic Nb analogues were also included in the study. The target compounds were characterized by spectroscopic techniques including 1-dimensional nuclear magnetic resonance (1D NMR) and high-resolution mass spectroscopy. The synthesized compounds were evaluated in vitro for potential anticancer and antiplasmodial activities using the breast cancer cell line (HCC38) and chloroquine-sensitive strain (3D7) of the malaria parasite, Plasmodium falciparum. The presence of the Fc unit was found to enhance both anticancer and antiplasmodial activities of the resultant ferrocenyl Nb compounds with IC50 values in the low to mid micromolar range. Hsp90 inhibitory studies of the ferrocenyl Nb analogues possessing superior activities (2.13a and 2.20c) were also conducted using different yeast strains expressing both human and malarial Hsp90 isoforms: hHsp90a/p and PfHsp90, respectively. The results of Hsp90 inhibitory studies suggested no direct correlation between the observed activities of the analogues and Hsp90 inhibition. However, since the conditions of the assay were not optimised due to time constrains of the project, these observed data remained to be confirmed. , Thesis (MSc) -- Faculty of Science, Chemistry, 2017
- Full Text:
The effects of extracellular and intracellular Hop on cell migration processes
- Authors: Contu, Lara
- Date: 2014
- Subjects: Heat shock proteins , Metastasis , Cancer Chemotherapy , Molecular chaperones , Cell migration
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/193961 , vital:45410
- Description: The Hsp70/Hsp90-organising protein (Hop) is a 60 kDa co-chaperone that acts as an adaptor molecule, facilitating the transfer of client proteins between the Hsp70 and Hsp90 chaperone systems. Hop functions both intracellularly and extracellularly and has been implicated in many processes involved in cancer progression, including cell migration and invasion. Little is known about the mechanisms or domains by which extracellular Hop functions. In addition, little is known about the effects of Hop on signalling molecules involved in cell migration and invasion through regulation of actin dynamics. It was hypothesised that both extracellular and intracellular pools of Hop would regulate distinct cell migration processes by activation of cell signalling pathways or direct interactions with signalling intermediates. HS578T cells were treated with recombinant full length and truncated murine Hop proteins (overexpressed and purified in this study) to determine the effects of extracellular Hop and the independent domains on cell migration processes. Additionally, RNA interference (RNAi) techniques were used to determine the effect of Hop knockdown on cell migration related signalling intermediates and cell morphologies. A short hairpin RNA (shRNA) system for the stable knockdown of Hop was developed and used for a number of these studies. Treatment of HS578T cells with the TPR2A2B and TPR1 domains of Hop resulted in a significant decrease in cell migration and caused changes in the actin cytoskeleton and extracellular matrix proteins, gelatin and fibronectin. RhoC immunoprecipitated in a common complex with Hop and Hsp90. Hop knockdown reduced levels of actin and total RhoC, as well as active RhoC. In addition, knockdown of Hop resulted in a reduced migratory phenotype. We interpreted these data to indicate that intracellular Hop played a role in cell migration through regulation of RhoC activity, either through a direct interaction between Hop and RhoC, or an indirect interaction of RhoC with the Hsp90 multichaperone heterocomplex. Taken together, the data suggested that extracellular and intracellular Hop played distinct roles in extracellular and intracellular processes that lead to actin dynamics and cell migration. Understanding the mechanistic role of Hop in these processes is essential as it would aid in assessing the viability of Hop as a potential drug target for the treatment of metastatic cancers. , Thesis (MSc) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2014
- Full Text:
- Authors: Contu, Lara
- Date: 2014
- Subjects: Heat shock proteins , Metastasis , Cancer Chemotherapy , Molecular chaperones , Cell migration
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/193961 , vital:45410
- Description: The Hsp70/Hsp90-organising protein (Hop) is a 60 kDa co-chaperone that acts as an adaptor molecule, facilitating the transfer of client proteins between the Hsp70 and Hsp90 chaperone systems. Hop functions both intracellularly and extracellularly and has been implicated in many processes involved in cancer progression, including cell migration and invasion. Little is known about the mechanisms or domains by which extracellular Hop functions. In addition, little is known about the effects of Hop on signalling molecules involved in cell migration and invasion through regulation of actin dynamics. It was hypothesised that both extracellular and intracellular pools of Hop would regulate distinct cell migration processes by activation of cell signalling pathways or direct interactions with signalling intermediates. HS578T cells were treated with recombinant full length and truncated murine Hop proteins (overexpressed and purified in this study) to determine the effects of extracellular Hop and the independent domains on cell migration processes. Additionally, RNA interference (RNAi) techniques were used to determine the effect of Hop knockdown on cell migration related signalling intermediates and cell morphologies. A short hairpin RNA (shRNA) system for the stable knockdown of Hop was developed and used for a number of these studies. Treatment of HS578T cells with the TPR2A2B and TPR1 domains of Hop resulted in a significant decrease in cell migration and caused changes in the actin cytoskeleton and extracellular matrix proteins, gelatin and fibronectin. RhoC immunoprecipitated in a common complex with Hop and Hsp90. Hop knockdown reduced levels of actin and total RhoC, as well as active RhoC. In addition, knockdown of Hop resulted in a reduced migratory phenotype. We interpreted these data to indicate that intracellular Hop played a role in cell migration through regulation of RhoC activity, either through a direct interaction between Hop and RhoC, or an indirect interaction of RhoC with the Hsp90 multichaperone heterocomplex. Taken together, the data suggested that extracellular and intracellular Hop played distinct roles in extracellular and intracellular processes that lead to actin dynamics and cell migration. Understanding the mechanistic role of Hop in these processes is essential as it would aid in assessing the viability of Hop as a potential drug target for the treatment of metastatic cancers. , Thesis (MSc) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2014
- Full Text:
- «
- ‹
- 1
- ›
- »