Development, assessment and optimisation of oral famciclovir formulations for paediatric use
- Authors: Magnus, Laura
- Date: 2012
- Subjects: Drugs -- Dosage forms , Drugs -- Analysis , Capsules (Pharmacy) , Antiviral agents , Pediatrics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3870 , http://hdl.handle.net/10962/d1018244
- Description: Many Active Pharmaceutical Ingredients (API) such as the antiviral agent famciclovir (FCV) are required for paediatric treatment but are not commercially available in age-appropriate dosage forms. It is common practice to prepare oral liquid dosage forms using commercially available tablets, capsules or powdered API and then dispersing or dissolving the crushed and/or powdered materials in a vehicle that the patient can swallow. Vehicles that are commonly used for this purpose include methylcellulose, syrup or combinations of these carriers where possible or commercially available suspending agents such as Ora-Sweet®, if available, can be used. However, several critical factors are overlooked when manufacturing extemporaneous formulations including, but not limited to, physical and chemical properties of the API, excipients, compatibility, stability and bioavailability issues. A stability-indicating High Performance Liquid Chromatography (HPLC) method for the analysis of FCV was developed and validated according to the International Conference on Harmonization (ICH) guidelines. The method is sensitive, selective, precise, accurate and linear over the concentration range 2-120 μg/ml. The stability of 25 mg/ml FCV formulations was assessed in vehicles manufactured from syrup simplex, hydroxypropyl methylcellulose (HPMC), Ora-Sweet® and an aqueous buffer (pH 6) following storage at 25 °C/60% RH and 40 °C/75% RH over six (6) to eight (8) weeks. The shelf life of the products was calculated as the longest period of storage for approximately 90% of the added FCV to be recovered. Formulations were manufactured using syrup simplex or HPMC with methylparaben and propylparaben individually or in combination and with sodium metabisulphite, ascorbic acid or citric acid as antioxidants. The resultant products were subject to quality control analysis for API content, viscosity, pH and appearance and the resultant data were subject to statistical analysis. The degradation rates were calculated for each product and a degradation profile plotted. The degradation rates of FCV in extemporaneous formulations were compared to those of FCV manufactured using a commercially available suspending agent and a buffered vehicle. FCV undergoes major degradation in the presence of sucrose, as observed for formulations in which the vehicle was syrup and Ora-Sweet®. FCV was found to be most stable when dissolved/dispersed in an HPMC vehicle incorporating sodium metabisulphite and a combination of parabens. The formulation that exhibited the maximum stability was manufactured using an aqueous solution buffered to pH 6. Due to the enhanced stability of FCV when added to a buffered vehicle a formulation in which an HPMC vehicle buffered to pH 6 with sodium metabisulphite, methylparaben and propylparaben was selected for optimisation using a Central Composite Design approach (CCD). In this way it was possible to establish a relationship between input variables such as pH, % w/v HPMC, % w/v antioxidant and % w/v preservative and the responses selected for monitoring by means of response surface modelling. A quadratic model was found to be the most appropriate to describe the relationship between input and output variables. Thirty batches of product were randomly manufactured according to the CCD and analysed to establish the stability in respect of viscosity, pH and the amount of FCV remaining following storage and the data were fitted to models using Design-Expert® software. A correlation between input variables and the responses was best described by a quadratic polynomial model. Analysis of Variance indicated that the response surface models were significant (P-value < 0.0001). The pH to which a FCV formulation was buffered was the most significant factor to effect the % drug content and the ultimate pH of the formulation, while the % w/v HPMC had the most significant effect on the viscosity of the product. The optimum composition for the manufacture of an oral liquid FCV formulation was predicted using the optimisation function of the Design-Expert® software. A low % error of prediction was established, indicating that the model is robust and that RSM is an appropriate formulation optimisation tool as it has a high prognostic ability. A liquid FCV formulation was developed, optimised and found to be suitable for its intended purpose. However further optimisation is required in respect of colourants, sweeteners and/or flavourants. The approach followed is useful in ensuring the development of quality products and can be applied in future.
- Full Text:
- Authors: Magnus, Laura
- Date: 2012
- Subjects: Drugs -- Dosage forms , Drugs -- Analysis , Capsules (Pharmacy) , Antiviral agents , Pediatrics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3870 , http://hdl.handle.net/10962/d1018244
- Description: Many Active Pharmaceutical Ingredients (API) such as the antiviral agent famciclovir (FCV) are required for paediatric treatment but are not commercially available in age-appropriate dosage forms. It is common practice to prepare oral liquid dosage forms using commercially available tablets, capsules or powdered API and then dispersing or dissolving the crushed and/or powdered materials in a vehicle that the patient can swallow. Vehicles that are commonly used for this purpose include methylcellulose, syrup or combinations of these carriers where possible or commercially available suspending agents such as Ora-Sweet®, if available, can be used. However, several critical factors are overlooked when manufacturing extemporaneous formulations including, but not limited to, physical and chemical properties of the API, excipients, compatibility, stability and bioavailability issues. A stability-indicating High Performance Liquid Chromatography (HPLC) method for the analysis of FCV was developed and validated according to the International Conference on Harmonization (ICH) guidelines. The method is sensitive, selective, precise, accurate and linear over the concentration range 2-120 μg/ml. The stability of 25 mg/ml FCV formulations was assessed in vehicles manufactured from syrup simplex, hydroxypropyl methylcellulose (HPMC), Ora-Sweet® and an aqueous buffer (pH 6) following storage at 25 °C/60% RH and 40 °C/75% RH over six (6) to eight (8) weeks. The shelf life of the products was calculated as the longest period of storage for approximately 90% of the added FCV to be recovered. Formulations were manufactured using syrup simplex or HPMC with methylparaben and propylparaben individually or in combination and with sodium metabisulphite, ascorbic acid or citric acid as antioxidants. The resultant products were subject to quality control analysis for API content, viscosity, pH and appearance and the resultant data were subject to statistical analysis. The degradation rates were calculated for each product and a degradation profile plotted. The degradation rates of FCV in extemporaneous formulations were compared to those of FCV manufactured using a commercially available suspending agent and a buffered vehicle. FCV undergoes major degradation in the presence of sucrose, as observed for formulations in which the vehicle was syrup and Ora-Sweet®. FCV was found to be most stable when dissolved/dispersed in an HPMC vehicle incorporating sodium metabisulphite and a combination of parabens. The formulation that exhibited the maximum stability was manufactured using an aqueous solution buffered to pH 6. Due to the enhanced stability of FCV when added to a buffered vehicle a formulation in which an HPMC vehicle buffered to pH 6 with sodium metabisulphite, methylparaben and propylparaben was selected for optimisation using a Central Composite Design approach (CCD). In this way it was possible to establish a relationship between input variables such as pH, % w/v HPMC, % w/v antioxidant and % w/v preservative and the responses selected for monitoring by means of response surface modelling. A quadratic model was found to be the most appropriate to describe the relationship between input and output variables. Thirty batches of product were randomly manufactured according to the CCD and analysed to establish the stability in respect of viscosity, pH and the amount of FCV remaining following storage and the data were fitted to models using Design-Expert® software. A correlation between input variables and the responses was best described by a quadratic polynomial model. Analysis of Variance indicated that the response surface models were significant (P-value < 0.0001). The pH to which a FCV formulation was buffered was the most significant factor to effect the % drug content and the ultimate pH of the formulation, while the % w/v HPMC had the most significant effect on the viscosity of the product. The optimum composition for the manufacture of an oral liquid FCV formulation was predicted using the optimisation function of the Design-Expert® software. A low % error of prediction was established, indicating that the model is robust and that RSM is an appropriate formulation optimisation tool as it has a high prognostic ability. A liquid FCV formulation was developed, optimised and found to be suitable for its intended purpose. However further optimisation is required in respect of colourants, sweeteners and/or flavourants. The approach followed is useful in ensuring the development of quality products and can be applied in future.
- Full Text:
Development and assessment of minocycline sustained release capsule formulations
- Sachikonye, Tinotenda Chipo Victoria
- Authors: Sachikonye, Tinotenda Chipo Victoria
- Date: 2010
- Subjects: Drugs -- Controlled release , Drugs -- Dosage forms , Capsules (Pharmacy) , Drugs -- Administration , Acne -- Treatment , Tetracyclines , Antibiotics -- Side effects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3854 , http://hdl.handle.net/10962/d1013127
- Description: The use of minocycline for the treatment of a broad range of systemic infections and for severe acne has been associated with vestibular side effects. The severity of side effects may lead to poor adherence to therapy by patients. The use of sustained release formulations of minocycline that display slow dissolution of minocycline following administration may be beneficial in reducing the incidence and severity of side effects. Therefore, sustained release capsule dosage forms containing 100 mg minocycline (base) were manufactured and assessed for use as sustained release oral dosage forms of minocycline. Minocycline sustained release capsules were manufactured based on matrix technologies using hydroxypropylmethyl cellulose (HPMC) and Compritol® as release retarding polymers. The rate and extent of minocycline release from the capsules was evaluated using USP Apparatus 1 and samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection. Differences in the rate and extent of minocycline release from formulations manufactured using HPMC or Compritol® were influenced by the concentration of polymer used in the formulations. The rate and extent of minocycline release was faster and greater when low concentrations of polymer were used in formulations. The effect of different excipients on the release pattern(s) of minocycline and particularly their potential to optimise minocycline release from experimental formulations was investigated. The use of diluents such as lactose and microcrystalline cellulose (MCC) revealed that lactose facilitated minocycline release when HPMC was used as the polymer matrix. In contrast, the use of lactose as diluent resulted in slower release of minocycline from Compritol® based formulations. The addition of sodium starch glycolate to HPMC based formulations resulted in slower release of minocycline than when no sodium starch glycolate was used. Compritol® based formulations were observed to release minocycline faster following addition of sodium starch glycolate and Poloxamer 188 to experimental formulations. In vitro dissolution profiles were compared to a target or reference profile using the difference and similarity factors, ƒ1 and ƒ2 , and a one way analysis of variance (ANOVA). In addition, the mechanism of minocycline release was elucidated following fitting of dissolution data to the Korsmeyer-Peppas, Higuchi and Zero order models. Minocycline release kinetics were best described by the Korsmeyer-Peppas model and the values of the release exponent, n (italics), revealed that drug release was a result of the combined effects of minocycline diffusion through matrices and erosion of the matrices. These in vitro dissolution profiles were better fit to the Higuchi model than to the Zero order model. Two formulations that displayed a fit to the Zero order model were identified for further studies as potential dosage forms for sustained release minocycline.
- Full Text:
- Authors: Sachikonye, Tinotenda Chipo Victoria
- Date: 2010
- Subjects: Drugs -- Controlled release , Drugs -- Dosage forms , Capsules (Pharmacy) , Drugs -- Administration , Acne -- Treatment , Tetracyclines , Antibiotics -- Side effects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3854 , http://hdl.handle.net/10962/d1013127
- Description: The use of minocycline for the treatment of a broad range of systemic infections and for severe acne has been associated with vestibular side effects. The severity of side effects may lead to poor adherence to therapy by patients. The use of sustained release formulations of minocycline that display slow dissolution of minocycline following administration may be beneficial in reducing the incidence and severity of side effects. Therefore, sustained release capsule dosage forms containing 100 mg minocycline (base) were manufactured and assessed for use as sustained release oral dosage forms of minocycline. Minocycline sustained release capsules were manufactured based on matrix technologies using hydroxypropylmethyl cellulose (HPMC) and Compritol® as release retarding polymers. The rate and extent of minocycline release from the capsules was evaluated using USP Apparatus 1 and samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection. Differences in the rate and extent of minocycline release from formulations manufactured using HPMC or Compritol® were influenced by the concentration of polymer used in the formulations. The rate and extent of minocycline release was faster and greater when low concentrations of polymer were used in formulations. The effect of different excipients on the release pattern(s) of minocycline and particularly their potential to optimise minocycline release from experimental formulations was investigated. The use of diluents such as lactose and microcrystalline cellulose (MCC) revealed that lactose facilitated minocycline release when HPMC was used as the polymer matrix. In contrast, the use of lactose as diluent resulted in slower release of minocycline from Compritol® based formulations. The addition of sodium starch glycolate to HPMC based formulations resulted in slower release of minocycline than when no sodium starch glycolate was used. Compritol® based formulations were observed to release minocycline faster following addition of sodium starch glycolate and Poloxamer 188 to experimental formulations. In vitro dissolution profiles were compared to a target or reference profile using the difference and similarity factors, ƒ1 and ƒ2 , and a one way analysis of variance (ANOVA). In addition, the mechanism of minocycline release was elucidated following fitting of dissolution data to the Korsmeyer-Peppas, Higuchi and Zero order models. Minocycline release kinetics were best described by the Korsmeyer-Peppas model and the values of the release exponent, n (italics), revealed that drug release was a result of the combined effects of minocycline diffusion through matrices and erosion of the matrices. These in vitro dissolution profiles were better fit to the Higuchi model than to the Zero order model. Two formulations that displayed a fit to the Zero order model were identified for further studies as potential dosage forms for sustained release minocycline.
- Full Text:
- «
- ‹
- 1
- ›
- »