Theoretical aspects of the reaction of zirconium compunds and vegetable tannins with the chromium-collagen complex
- Williams-Wynn, David Ernest Arthur
- Authors: Williams-Wynn, David Ernest Arthur
- Date: 1969
- Subjects: Zirconium compounds , Collagen , Chromium compounds , Tannins
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4512 , http://hdl.handle.net/10962/d1013455
- Description: Studies have been made of the reactions which take place when zirconium compounds and vegetable tannins react with chromium tanned leather, in order to elucidate the mechanisms of the reactions which occur on retannage. Statistical procedures have been used in all investigations because of the variable nature of the substrate, and computer techniques have been applied to the repetitive statistical computations. Although chromium and vegetable tannages are well understood, further information on the reaction of zirconium with collagen was necessary before attempting to interpret the results of the studies of combination tannages with chromium, and this has been obtained by a comparative study of the reactions of chromium and zirconium with modified collagen. It is concluded that the mechanism of the reaction of basic zirconium sulphate with collagen is multipoint attachment of the tanning material by residual valency forces, although charge effects with basic groups may be supplementary. Zirconyl chloride reacts with carboxyl groups but does not form satisfactory, stable cross-links with collagen. Further evidence for this theory was obtained from the investigation of the reaction of zirconium compounds with chromium tanned collagen. Zirconyl sulphate does not interfere with effective chromium tannage and therefore can have little affinity for the carboxyl groups on the protein, but it displaces chromium complexes loosely held by auxiliary valencies without reducing the shrinkage temperature of the chromium leather Zirconyl chloride, although only fixed to a limited extent, apparently forms co-ordination compounds with the carboxyl groups, disrupting the chromium tannage because there is an over-all loss of hydrothermal stability. There is no evidence that zirconium co-ordinates with, or releases acid from chromium-collagen complexes, since combination chromium/zirconium tanned leathers are stable on storage. Retannage of chromium tanned leather with vegetable tanning materials generally results in loss of strength and a product which tends to deteriorate on ageing. Lower initial strength is probably due to the increased avidity of chromium tanned pelt for vegetable tannins, resulting from the liberation of internally neutralised reactive sites which are not normally available in vegetable tannage, and from the co- ordination of vegetable tannins and non-tannins to the chromium complex with the displacement of sulphate radicals. From a study of the retannage of chromium tanned modified collagen, it appears that basic groups probably play an important part in the rapid absorption of vegetable tannin. These reactions result in overloading of the fibre and an increased number of cross-links, both of which tend to produce weak leather. Deterioration with age is primarily a hydrolytic degradation of the protein which is catalysed by acid liberated from the chromium complexes by the entry of vegetable tannins, those factors which favour the formation of acid causing greater and more rapid deterioration.
- Full Text:
- Date Issued: 1969
- Authors: Williams-Wynn, David Ernest Arthur
- Date: 1969
- Subjects: Zirconium compounds , Collagen , Chromium compounds , Tannins
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4512 , http://hdl.handle.net/10962/d1013455
- Description: Studies have been made of the reactions which take place when zirconium compounds and vegetable tannins react with chromium tanned leather, in order to elucidate the mechanisms of the reactions which occur on retannage. Statistical procedures have been used in all investigations because of the variable nature of the substrate, and computer techniques have been applied to the repetitive statistical computations. Although chromium and vegetable tannages are well understood, further information on the reaction of zirconium with collagen was necessary before attempting to interpret the results of the studies of combination tannages with chromium, and this has been obtained by a comparative study of the reactions of chromium and zirconium with modified collagen. It is concluded that the mechanism of the reaction of basic zirconium sulphate with collagen is multipoint attachment of the tanning material by residual valency forces, although charge effects with basic groups may be supplementary. Zirconyl chloride reacts with carboxyl groups but does not form satisfactory, stable cross-links with collagen. Further evidence for this theory was obtained from the investigation of the reaction of zirconium compounds with chromium tanned collagen. Zirconyl sulphate does not interfere with effective chromium tannage and therefore can have little affinity for the carboxyl groups on the protein, but it displaces chromium complexes loosely held by auxiliary valencies without reducing the shrinkage temperature of the chromium leather Zirconyl chloride, although only fixed to a limited extent, apparently forms co-ordination compounds with the carboxyl groups, disrupting the chromium tannage because there is an over-all loss of hydrothermal stability. There is no evidence that zirconium co-ordinates with, or releases acid from chromium-collagen complexes, since combination chromium/zirconium tanned leathers are stable on storage. Retannage of chromium tanned leather with vegetable tanning materials generally results in loss of strength and a product which tends to deteriorate on ageing. Lower initial strength is probably due to the increased avidity of chromium tanned pelt for vegetable tannins, resulting from the liberation of internally neutralised reactive sites which are not normally available in vegetable tannage, and from the co- ordination of vegetable tannins and non-tannins to the chromium complex with the displacement of sulphate radicals. From a study of the retannage of chromium tanned modified collagen, it appears that basic groups probably play an important part in the rapid absorption of vegetable tannin. These reactions result in overloading of the fibre and an increased number of cross-links, both of which tend to produce weak leather. Deterioration with age is primarily a hydrolytic degradation of the protein which is catalysed by acid liberated from the chromium complexes by the entry of vegetable tannins, those factors which favour the formation of acid causing greater and more rapid deterioration.
- Full Text:
- Date Issued: 1969
Investigation of the formation of complexes between selected organic compounds and the chlorides and sulphates of chromium
- Authors: Ellis, Melville John
- Date: 1961
- Subjects: Organic compounds , Chromium compounds , Chlorides , Sulfates
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4466 , http://hdl.handle.net/10962/d1011744 , Organic compounds , Chromium compounds , Chlorides , Sulfates
- Description: Some properties of soluble chromium complexions containing coordinated aliphatic acids have been studied. The work falls naturally into two sections. In the first, the coordination of a series of ⊄, β and⊁amino acids by chromium chloride has been studied by physical methods. The tanning action of chromium chloride in the presence of these amino acids has also been studied. The absorption spectra of the complexes were similar to those reported previously for trivalent chromium solutions, having two pronounced maxima in the visible region. From the variations in these absorption maxima, it is suggested that the absorption maximum in the 580 m u region is influenced by coordination of the chromium with the ligand, while the maximum in the 420 m u region is also affected by the olation of the basic chromium salts. The spectrophotometric evidence indicates that raising the pH or the concentration of the ligand in the solution increases the amount of coordination, and further, that the tendency for coordination increases as the hydrocarbon chain separating the carboxyl and amino groups becomes longer. This suggests that tho stability of the complex is not dependent on chelate ring formation, but is influenced by the pK₁ value of the carboxyl group of the . ligand. Potentiometric titrations support the hypothesis that only the carboxyl group is coordinated, to an extent depending on its pK₁ value, since the curves have shown that the amino group is still free to titrate. Paper electrophoresis has shown that all the complexes prepared were cationic, indicating that the amino acids were coordinated as dipolar ions. The tanning action of the masked chromium solutions has confirmed the deductions made from the physical measurements. Increasing the amount of amino acid added to the solution lowered the chromium fixation and the hydrothermal stability of the leather, and further, that for solutions at the same pH containing the same amount of masking agent, tanning action was least for the ⊁ amino acid and greatest for the ⊄ amino acids. Comparison of the present data with the corresponding results obtained with chrome alum solutions showed that coordination of the amino acids was greater in the case of the chromium chloride solutions. The second section of the experimental work was an investigation of the coordination of substituted acetic and propionic acids by chromium chloride and chromium sulphate. Spectrophotometric and potentiometric methods were applied and the various solutions were also used in miniature tanning experiments. Certain difficulties were encountered in the preparation of some of the complexes, and it was not possible to carry the work to a point where conclusive results could be obtained. Nevertheless, the work reported suggests that chelate ring formation occurs in the coordination of hydroxy-carboxylic acids, resulting in exceptionally high stability of the complex. In the case of the other ligands, containing amino, chloro and bromo groups, as well as with acetic and propionic acids, the results suggest that coordination involves the carboxyl group only, and that the pY value of this group is an important factor determining the stability of the complexes.
- Full Text:
- Date Issued: 1961
- Authors: Ellis, Melville John
- Date: 1961
- Subjects: Organic compounds , Chromium compounds , Chlorides , Sulfates
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4466 , http://hdl.handle.net/10962/d1011744 , Organic compounds , Chromium compounds , Chlorides , Sulfates
- Description: Some properties of soluble chromium complexions containing coordinated aliphatic acids have been studied. The work falls naturally into two sections. In the first, the coordination of a series of ⊄, β and⊁amino acids by chromium chloride has been studied by physical methods. The tanning action of chromium chloride in the presence of these amino acids has also been studied. The absorption spectra of the complexes were similar to those reported previously for trivalent chromium solutions, having two pronounced maxima in the visible region. From the variations in these absorption maxima, it is suggested that the absorption maximum in the 580 m u region is influenced by coordination of the chromium with the ligand, while the maximum in the 420 m u region is also affected by the olation of the basic chromium salts. The spectrophotometric evidence indicates that raising the pH or the concentration of the ligand in the solution increases the amount of coordination, and further, that the tendency for coordination increases as the hydrocarbon chain separating the carboxyl and amino groups becomes longer. This suggests that tho stability of the complex is not dependent on chelate ring formation, but is influenced by the pK₁ value of the carboxyl group of the . ligand. Potentiometric titrations support the hypothesis that only the carboxyl group is coordinated, to an extent depending on its pK₁ value, since the curves have shown that the amino group is still free to titrate. Paper electrophoresis has shown that all the complexes prepared were cationic, indicating that the amino acids were coordinated as dipolar ions. The tanning action of the masked chromium solutions has confirmed the deductions made from the physical measurements. Increasing the amount of amino acid added to the solution lowered the chromium fixation and the hydrothermal stability of the leather, and further, that for solutions at the same pH containing the same amount of masking agent, tanning action was least for the ⊁ amino acid and greatest for the ⊄ amino acids. Comparison of the present data with the corresponding results obtained with chrome alum solutions showed that coordination of the amino acids was greater in the case of the chromium chloride solutions. The second section of the experimental work was an investigation of the coordination of substituted acetic and propionic acids by chromium chloride and chromium sulphate. Spectrophotometric and potentiometric methods were applied and the various solutions were also used in miniature tanning experiments. Certain difficulties were encountered in the preparation of some of the complexes, and it was not possible to carry the work to a point where conclusive results could be obtained. Nevertheless, the work reported suggests that chelate ring formation occurs in the coordination of hydroxy-carboxylic acids, resulting in exceptionally high stability of the complex. In the case of the other ligands, containing amino, chloro and bromo groups, as well as with acetic and propionic acids, the results suggest that coordination involves the carboxyl group only, and that the pY value of this group is an important factor determining the stability of the complexes.
- Full Text:
- Date Issued: 1961
- «
- ‹
- 1
- ›
- »