Thermal physiology of juvenile red roman seabream, Chrysoblephus laticeps after long-term exposure to low pH conditions
- Authors: Allison, Caitlin
- Date: 2023-10-13
- Subjects: Climatic changes , Ocean acidification , Basal metabolism , Chrysoblephus laticeps , Thermal tolerance (Physiology) , Phenotypic plasticity , Fishes Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424323 , vital:72143
- Description: Climate change has caused a combination of effects on the physiology of fishes. Of particular concern are the effects of thermal variability and ocean acidification. Organismal energy budgets change throughout ontogeny and research into the metabolic scope during early life stages is particularly useful in identifying potential bottlenecks. The first part of this thesis aimed to assess the absolute aerobic scope (AAS, described as the difference between the maximum and standard metabolic rates) of individual juveniles from a protected population of the endemic, commercially important seabream, Chrysoblephus laticeps, across a range of ecologically relevant temperatures (T = 11, 14, 18, 22˚C) under present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) using intermittent flow respirometry. The second component sought to investigate how long-term exposure (from fertilisation to juvenile, ~100 days exposure) to high-pCO2/hypercapnic conditions (pH = 7.63, pCO2 ≈ 1400 μatm), would affect the AAS of juvenile C. laticeps over a range of temperatures. Lower pH conditions were predicted to cause a decrease in the AAS of treatment animals due to additional energetic costs of acid-base regulation. The findings of the first data chapter demonstrated that juvenile C. laticeps reared under current CO2 conditions are tolerant to a wide range of thermal conditions, and individuals with a broad aerobic scope will be the best suited to coping with enhanced thermal variability. In contrast to the expected outcomes of the second data chapter, juvenile C. laticeps reared under high pCO2 conditions displayed greater AAS at high and low temperatures when compared with specimens from high pH conditions. Whilst a high degree of individual phenotypic variation was observed in the metabolic response of both groups, this was reduced at the lower and upper extreme temperatures for high pH and low pH animals respectively. Notably, the variation in treatment animal’s SMR was significantly diminished across all temperatures tested, compared to only a localised reduction in the SMR of high pH animals at cold temperatures. This may be indicative of compensatory pathways affecting energy restructuring and thermally-governed physiological trade-offs under hypercapnia. Given these results, juvenile C. laticeps appear to be more resilient to ocean acidification than anticipated, potentially owing to intrapopulation metabolic phenotypic diversity. This is likely attributed to the parental lineage originating in the Tsitsikamma MPA, which is thought to boast greater phenotypic diversity as a consequence of the refuge that these conservation areas offer from exploitation. Owing to the restriction imposed by the availability of surviving, captive-reared juveniles, the sample size used in this study was relatively low. However, owing to the repeated-measures nature of this research the sample size was sufficient to offer suitable statistical power for the polynomial mixed model used in the analysis. Future research should incorporate both physiological and behavioural responses to multiple environmental stressors to better understand covariation between these two traits, and to detect any behavioural trade-offs that might arise through compensation. In addition, these trials should be repeated using offspring from outside of the MPA to compare whether the same level of resilience and metabolic phenotypic diversity would be present in an exploited population. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Authors: Allison, Caitlin
- Date: 2023-10-13
- Subjects: Climatic changes , Ocean acidification , Basal metabolism , Chrysoblephus laticeps , Thermal tolerance (Physiology) , Phenotypic plasticity , Fishes Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424323 , vital:72143
- Description: Climate change has caused a combination of effects on the physiology of fishes. Of particular concern are the effects of thermal variability and ocean acidification. Organismal energy budgets change throughout ontogeny and research into the metabolic scope during early life stages is particularly useful in identifying potential bottlenecks. The first part of this thesis aimed to assess the absolute aerobic scope (AAS, described as the difference between the maximum and standard metabolic rates) of individual juveniles from a protected population of the endemic, commercially important seabream, Chrysoblephus laticeps, across a range of ecologically relevant temperatures (T = 11, 14, 18, 22˚C) under present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) using intermittent flow respirometry. The second component sought to investigate how long-term exposure (from fertilisation to juvenile, ~100 days exposure) to high-pCO2/hypercapnic conditions (pH = 7.63, pCO2 ≈ 1400 μatm), would affect the AAS of juvenile C. laticeps over a range of temperatures. Lower pH conditions were predicted to cause a decrease in the AAS of treatment animals due to additional energetic costs of acid-base regulation. The findings of the first data chapter demonstrated that juvenile C. laticeps reared under current CO2 conditions are tolerant to a wide range of thermal conditions, and individuals with a broad aerobic scope will be the best suited to coping with enhanced thermal variability. In contrast to the expected outcomes of the second data chapter, juvenile C. laticeps reared under high pCO2 conditions displayed greater AAS at high and low temperatures when compared with specimens from high pH conditions. Whilst a high degree of individual phenotypic variation was observed in the metabolic response of both groups, this was reduced at the lower and upper extreme temperatures for high pH and low pH animals respectively. Notably, the variation in treatment animal’s SMR was significantly diminished across all temperatures tested, compared to only a localised reduction in the SMR of high pH animals at cold temperatures. This may be indicative of compensatory pathways affecting energy restructuring and thermally-governed physiological trade-offs under hypercapnia. Given these results, juvenile C. laticeps appear to be more resilient to ocean acidification than anticipated, potentially owing to intrapopulation metabolic phenotypic diversity. This is likely attributed to the parental lineage originating in the Tsitsikamma MPA, which is thought to boast greater phenotypic diversity as a consequence of the refuge that these conservation areas offer from exploitation. Owing to the restriction imposed by the availability of surviving, captive-reared juveniles, the sample size used in this study was relatively low. However, owing to the repeated-measures nature of this research the sample size was sufficient to offer suitable statistical power for the polynomial mixed model used in the analysis. Future research should incorporate both physiological and behavioural responses to multiple environmental stressors to better understand covariation between these two traits, and to detect any behavioural trade-offs that might arise through compensation. In addition, these trials should be repeated using offspring from outside of the MPA to compare whether the same level of resilience and metabolic phenotypic diversity would be present in an exploited population. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
Long-term trends in fish length-at-age, catch-at-length and condition of the Namibian and South African commercially exploited species
- Authors: Iyambo, Elago Martha
- Date: 2022-10-14
- Subjects: Fishery management South Africa , Fishery management Namibia , Fishes Growth , Fisheries Fishing effort , Climatic changes , Fishes Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362872 , vital:65370
- Description: Fish growth rate is a flexible trait that can evolve in response to fishing or environmental change. Therefore, knowledge of fish growth rate patterns, long-term and short-term responses to fishing effort and environmental change is important for fisheries management in the Benguela. Historical and current age length keys have been used as indicators of annual fish growth in the Benguela, the growth rate study on Merluccius paradoxus demonstrated long-term changes in growth over three decades as a response to fishing. However, the fish growth rate patterns, in relation to fishing effort and environmental change patterns are still not known for the many commercially important stocks in the Benguela. The specific objectives of the project were to determine the annual variability and long-term trends, in annual mean lengths-at-age, catch-at-length and fish condition of 17 commercially exploited resources, targeted and bycatch in Namibia and South Africa in relation to environmental changes (sea surface temperature). The results showed that there was a significant decrease in mean length at age 7 for Merluccius capensis (Namibian stock), a significant decrease in mean length at ages 3 to 7 for South African M. capensis and a significant increase in mean length at ages 2 to 6 for South African M. paradoxus Fishery-induced evolution may be the reason for the increase in mean length in the early stages of hake. A regime shift was detected in the mean length at age 1 for Etrumeus whiteheadi (South African stock) caused by changes in water temperatures. A decrease in mean length of the catch was observed for Namibian M. capensis and the reason for this could have been the stock being overexploited during the years of the observed trend (1968 to 1987). Historically both the Namibian Lophius vomerinus and Helicolenus dactylopterus were bycatch of the hake fishery, therefore, the decrease in their mean length of the catch may be due to increased bycatch mortalities due to increased hake catches. The improvement in the management measures of the Jasus lalandii fishery and possible favourable oxygen fluctuation might have caused the stock to increase in mean length of the catch between 1977 and 1982. Fish condition showed a significant difference in stocks between years. Fish condition of M. capensis, M. paradoxus and T. capensis were analysed. The rest of the commercial stocks were omitted because there was limited length-weight data. For Namibian M. capensis the spawning season may have caused fish to have the best condition in 1987 and while higher temperatures in 1983 may have led to the worst condition in 1983. Higher prey availability in 1979 for Namibian M. paradoxus could have been the reason for fish with best condition being found in 1979. T. capensis had the highest condition index in 1986 when cooler summer SST prevailed that may have been more favourable for T. capensis to live in. July, September and January SSTs were significantly negatively correlated with the mean length of M. capensis at age 3. This was perhaps due to upwelling intensity and plankton productivity which increases in winter and decreases in summer. A separate study of the impacts of fishery-induced changes and density-dependence on fish growth rate, as well as the effects of other environmental variables is recommended. Since data for some species was outdated, it is suggested to update biological variables and assessment for future work. This study can be used to understand the key life history characteristics of Namibian and South African exploited resources, targeted and bycatch. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Authors: Iyambo, Elago Martha
- Date: 2022-10-14
- Subjects: Fishery management South Africa , Fishery management Namibia , Fishes Growth , Fisheries Fishing effort , Climatic changes , Fishes Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362872 , vital:65370
- Description: Fish growth rate is a flexible trait that can evolve in response to fishing or environmental change. Therefore, knowledge of fish growth rate patterns, long-term and short-term responses to fishing effort and environmental change is important for fisheries management in the Benguela. Historical and current age length keys have been used as indicators of annual fish growth in the Benguela, the growth rate study on Merluccius paradoxus demonstrated long-term changes in growth over three decades as a response to fishing. However, the fish growth rate patterns, in relation to fishing effort and environmental change patterns are still not known for the many commercially important stocks in the Benguela. The specific objectives of the project were to determine the annual variability and long-term trends, in annual mean lengths-at-age, catch-at-length and fish condition of 17 commercially exploited resources, targeted and bycatch in Namibia and South Africa in relation to environmental changes (sea surface temperature). The results showed that there was a significant decrease in mean length at age 7 for Merluccius capensis (Namibian stock), a significant decrease in mean length at ages 3 to 7 for South African M. capensis and a significant increase in mean length at ages 2 to 6 for South African M. paradoxus Fishery-induced evolution may be the reason for the increase in mean length in the early stages of hake. A regime shift was detected in the mean length at age 1 for Etrumeus whiteheadi (South African stock) caused by changes in water temperatures. A decrease in mean length of the catch was observed for Namibian M. capensis and the reason for this could have been the stock being overexploited during the years of the observed trend (1968 to 1987). Historically both the Namibian Lophius vomerinus and Helicolenus dactylopterus were bycatch of the hake fishery, therefore, the decrease in their mean length of the catch may be due to increased bycatch mortalities due to increased hake catches. The improvement in the management measures of the Jasus lalandii fishery and possible favourable oxygen fluctuation might have caused the stock to increase in mean length of the catch between 1977 and 1982. Fish condition showed a significant difference in stocks between years. Fish condition of M. capensis, M. paradoxus and T. capensis were analysed. The rest of the commercial stocks were omitted because there was limited length-weight data. For Namibian M. capensis the spawning season may have caused fish to have the best condition in 1987 and while higher temperatures in 1983 may have led to the worst condition in 1983. Higher prey availability in 1979 for Namibian M. paradoxus could have been the reason for fish with best condition being found in 1979. T. capensis had the highest condition index in 1986 when cooler summer SST prevailed that may have been more favourable for T. capensis to live in. July, September and January SSTs were significantly negatively correlated with the mean length of M. capensis at age 3. This was perhaps due to upwelling intensity and plankton productivity which increases in winter and decreases in summer. A separate study of the impacts of fishery-induced changes and density-dependence on fish growth rate, as well as the effects of other environmental variables is recommended. Since data for some species was outdated, it is suggested to update biological variables and assessment for future work. This study can be used to understand the key life history characteristics of Namibian and South African exploited resources, targeted and bycatch. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- «
- ‹
- 1
- ›
- »