The acute impact of extended aerobic exercise on cognitive performance
- Tichiwanhuyi, Tendayi Stephen
- Authors: Tichiwanhuyi, Tendayi Stephen
- Date: 2015
- Subjects: Aerobic exercises , Cognition -- Effect of exercise on , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Visual perception , Short-term memory , Motor ability , Human information processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5173 , http://hdl.handle.net/10962/d1018182
- Description: Previous research has established a relationship between exercise and cognition, with more emphasis on this ascertained link, being made on the effects of long term and endurance exercise on cognition. However, enhanced worker effectiveness relies on a strong acute collaboration of physical and cognitive performance during task execution. As a result, the purpose of this study was to examine the acute effects of extended aerobic exercise on visual perception, working memory and motor responses, and to achieve this 24 participants (12 males and 12 females) aged between 18 and 24 participated in a 2 bout cycling exercise. The experimental condition had cycling resistance set at 60 percent of each individual’s maximum aerobic output and the control condition had zero cycling resistance, where three cognitive tasks were performed at 10 minute intervals during the cycling exercise. The results showed that exercise did not affect any significant changes on the cognitive performance measures over the entire cycling duration, as well as during the exercise phase (cycling with resistance). However, visual perception improved significantly (p<0.05) immediately after exercise. This led to the conclusion that moderate to high intensity exercise when performed for an extended duration, has selective effects on certain cognitive performance measures, with the time at which the performance is measured during the exercise being a relevant factor to be considered for maximum activation effects of the exercise.
- Full Text:
- Authors: Tichiwanhuyi, Tendayi Stephen
- Date: 2015
- Subjects: Aerobic exercises , Cognition -- Effect of exercise on , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Visual perception , Short-term memory , Motor ability , Human information processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5173 , http://hdl.handle.net/10962/d1018182
- Description: Previous research has established a relationship between exercise and cognition, with more emphasis on this ascertained link, being made on the effects of long term and endurance exercise on cognition. However, enhanced worker effectiveness relies on a strong acute collaboration of physical and cognitive performance during task execution. As a result, the purpose of this study was to examine the acute effects of extended aerobic exercise on visual perception, working memory and motor responses, and to achieve this 24 participants (12 males and 12 females) aged between 18 and 24 participated in a 2 bout cycling exercise. The experimental condition had cycling resistance set at 60 percent of each individual’s maximum aerobic output and the control condition had zero cycling resistance, where three cognitive tasks were performed at 10 minute intervals during the cycling exercise. The results showed that exercise did not affect any significant changes on the cognitive performance measures over the entire cycling duration, as well as during the exercise phase (cycling with resistance). However, visual perception improved significantly (p<0.05) immediately after exercise. This led to the conclusion that moderate to high intensity exercise when performed for an extended duration, has selective effects on certain cognitive performance measures, with the time at which the performance is measured during the exercise being a relevant factor to be considered for maximum activation effects of the exercise.
- Full Text:
The effects of booster breaks during a sedentary night shift on physiological, psychomotor, psycho-physiological, and cognitive performance over a 3 night shift habituation phase
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- «
- ‹
- 1
- ›
- »