The development of a plate-based assay to detect the activation status of ARF1 GTPase in Plasmodium falciparum parasites
- Authors: Du Toit, Skye Carol
- Date: 2023-10-13
- Subjects: ARF1 , GTPase , Plasmodium falciparum , Malaria , Drug resistance , Drug targeting , Enzyme-linked immunosorbent assay , Proteins
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424654 , vital:72172
- Description: The exponential rise in antimalarial drug resistance in the most infectious malaria species, Plasmodium falciparum, has emphasised the urgency to identify and validate novel drug targets that decrease parasite viability upon inhibition. In addition to several publications indicating that the regulation of human Arf1 GTPase activity (mediated by ArfGEFs and ArfGAPs) serves as a pertinent drug target for cancer research, the identification of Arf1 and its regulatory proteins in Plasmodium falciparum led to the question whether these protein homologs could be exploited as drug targets for anti-malarial drug therapies. To investigate this prospect, the establishment of a novel in vitro colorimetric ELISA-based assay was needed to be able to detect changes in the activation status of P. falciparum Arf1 (PfArf1) in parasite cultures exposed to potential Arf1 inhibitors. By exploiting the selective protein interaction that occurs between active GTP-bound Arf1 and its downstream effector, GGA3, an assay protocol was established that could be used to detect the activation status of purified, truncated PfArf1 obtained from E. coli and endogenous PfArf1 sourced from parasite lysates. The assay relies on the use of anti-Arf1 antibodies to detect the binding of active PfArf1 in the lysates of inhibitor-exposed cultured parasites to GST-GGA3 immobilised in glutathione-coated plates. The results from chemical validation experiments conducted using the novel assay developed in this study, using the known ArfGEF inhibitor brefeldin A (BFA) and ArfGAP inhibitors Chem1099 and Chem3050, yielded the anticipated results: decrease in active PfArf1 after parasite incubation with the ArfGEF inhibitor, and increased active PfArf1 after ArfGAP inhibition. The results confirmed PfArf1 as a potential anti-malarial drug target and encourages the further development of this assay format for the identification of subsequent inhibitors in library screening campaigns. Additional pilot experiments were conducted to further explore whether the assay could detect the activation status of human Arf1 using HeLa cell lysates and to provide further evidence that the assay could be exploited as a tool in the identification of Arf1 GTPase inhibitors with BFA and the known ArfGAP inhibitor, QS11. The results suggested that, while the assay can detect the increase in active cellular Arf1 due to the inhibition of human ArfGEF following BFA treatment, subsequent treatment with QS11 showed no evidence of a reduction in active human Arf1 due to ArfGAP inhibition. Further experimentation is required to investigate the ability the assay to confirm inhibition of human Arf1 deactivation by ArfGAP inhibitors and develop the assay as a useful tool to support cancer drug discovery, in addition to antimalarial drug discovery projects aimed at Arf1. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Du Toit, Skye Carol
- Date: 2023-10-13
- Subjects: ARF1 , GTPase , Plasmodium falciparum , Malaria , Drug resistance , Drug targeting , Enzyme-linked immunosorbent assay , Proteins
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424654 , vital:72172
- Description: The exponential rise in antimalarial drug resistance in the most infectious malaria species, Plasmodium falciparum, has emphasised the urgency to identify and validate novel drug targets that decrease parasite viability upon inhibition. In addition to several publications indicating that the regulation of human Arf1 GTPase activity (mediated by ArfGEFs and ArfGAPs) serves as a pertinent drug target for cancer research, the identification of Arf1 and its regulatory proteins in Plasmodium falciparum led to the question whether these protein homologs could be exploited as drug targets for anti-malarial drug therapies. To investigate this prospect, the establishment of a novel in vitro colorimetric ELISA-based assay was needed to be able to detect changes in the activation status of P. falciparum Arf1 (PfArf1) in parasite cultures exposed to potential Arf1 inhibitors. By exploiting the selective protein interaction that occurs between active GTP-bound Arf1 and its downstream effector, GGA3, an assay protocol was established that could be used to detect the activation status of purified, truncated PfArf1 obtained from E. coli and endogenous PfArf1 sourced from parasite lysates. The assay relies on the use of anti-Arf1 antibodies to detect the binding of active PfArf1 in the lysates of inhibitor-exposed cultured parasites to GST-GGA3 immobilised in glutathione-coated plates. The results from chemical validation experiments conducted using the novel assay developed in this study, using the known ArfGEF inhibitor brefeldin A (BFA) and ArfGAP inhibitors Chem1099 and Chem3050, yielded the anticipated results: decrease in active PfArf1 after parasite incubation with the ArfGEF inhibitor, and increased active PfArf1 after ArfGAP inhibition. The results confirmed PfArf1 as a potential anti-malarial drug target and encourages the further development of this assay format for the identification of subsequent inhibitors in library screening campaigns. Additional pilot experiments were conducted to further explore whether the assay could detect the activation status of human Arf1 using HeLa cell lysates and to provide further evidence that the assay could be exploited as a tool in the identification of Arf1 GTPase inhibitors with BFA and the known ArfGAP inhibitor, QS11. The results suggested that, while the assay can detect the increase in active cellular Arf1 due to the inhibition of human ArfGEF following BFA treatment, subsequent treatment with QS11 showed no evidence of a reduction in active human Arf1 due to ArfGAP inhibition. Further experimentation is required to investigate the ability the assay to confirm inhibition of human Arf1 deactivation by ArfGAP inhibitors and develop the assay as a useful tool to support cancer drug discovery, in addition to antimalarial drug discovery projects aimed at Arf1. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2023
- Full Text:
- Date Issued: 2023-10-13
Identification of novel compounds against Plasmodium falciparum Cytochrome bc1 Complex inhibiting the trans-membrane electron transfer pathway: an In Silico study
- Authors: Chebon, Lorna Jemosop
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium falciparum , Molecular dynamics , Antimalarials , Molecules Models , Docking , Cytochromes , Drug resistance , Computer simulation , Drugs Computer-aided design , System analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365666 , vital:65774 , DOI https://doi.org/10.21504/10962/365666
- Description: Malaria continues to be a burden globally with a myriad of challenges deterring eradication efforts. With most antimalarials facing drug resistance, such as atovaquone (ATQ), alternative compounds that can withstand resistance are warranted. The Plasmodium falciparum cytochrome b (PfCytb), a subunit of P. falciparum cytochrome bc1 complex, is a validated drug target. Structurally, cytochrome b, cytochrome c1, and iron sulphur protein (ISP) subunits form the catalytic domain of the protein complex having heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors. These cofactos have redox centres to aid in the electron transfer (ET) process. These subunits promote ET mainly through the enzyme’s ubiquinol oxidation (Qo) and ubiquinone reduction (Qi) processes in the catalytic domain. ATQ drug has been used in the prevention and treatment of uncomplicated malaria by targeting PfCytb protein. Once the mitochondrial transmembrane ET pathway is inhibited, it causes a collapse in its membrane potential. Previously reported ATQ drug resistance has been associated with the point mutations Y268C, Y268N and Y268S. Thus, in finding alternatives to the ATQ drug, this research aimed to: i) employ in silico approaches incorporating protein into phospholipid bilayer for the first time to understand the parasites’ resistance mechanism; ii) determine any sequence and structural differences that could be explored in drug design studies; and iii) screen for PfCytb-iron sulphur protein (Cytb-ISP) hit compounds from South African natural compound database (SANCDB) and Medicines for Malaria Venture (MMV) that can withstand the identified mutations. Using computational tools, comparative sequence and structural analyses were performed on the cytochrome b protein, where the ultimate focus was on P. falciparum cytochrome b and its human homolog. Through multiple sequence alignment, motif discovery and phylogeny, differences between P. falciparum and H. sapiens cytochrome b were identified. Protein modelling of both P. falciparum and H. sapiens cytochrome b - iron sulphur protein (PfCytb-ISP and HsCytb-ISP) was performed. Results showed that at the sequence level, there were few amino acid residue differences because the protein is highly conserved. Important to note is the four-residue deletion in Plasmodium spp. absent in the human homolog. Motif analysis discovered five unique motifs in P. falciparum cytochrome b protein which were mapped onto the predicted protein model. These motifs were not in regions of functional importance; hence their function is still unknown. At a structural level, the four-residue deletion was observed to alter the Qo substrate binding pocket as reported in previous studies and confirmed in this study. This deletion resulted in a 0.83 Å structural displacement. Also, there are currently no in silico studies that have performed experiments with P. falciparum cytochrome b protein incorporated into a phospholipid bilayer. Using 350 ns molecular dynamics (MD) simulations of the holo and ATQ-bound systems, the study highlighted the resistance mechanism of the parasite protein where the loss of active site residue-residue interactions was identified, all linked to the three mutations. The identified compromised interactions are likely to destabilise the protein’s function, specifically in the Qo substrate binding site. This showed the possible effect of mutations on ATQ drug activity, where all three mutations were reported to share a similar resistance mechanism. Thereafter, this research work utilised in silico approaches where both Qo active site and interface pocket were targeted by screening the South African natural compounds database (SANCDB) and Medicines for Malaria Venture (MMV) compounds to identify novel selective hits. SANCDB compounds are known for their structural complexity that preserves the potency of the drug molecule. Both SANCDB and MMV compounds have not been explored as inhibitors against the PfCytb drug target. Molecular docking, molecular dynamics (MD) simulations, principal component, and dynamic residue network (DRN; global and local) analyses were utilised to identify and confirm the potential selective inhibitors. Docking results identified compounds that bound selectively onto PfCytb-ISP with a binding energy ≤ -8.7 kcal/mol-1. Further, this work validated a total of eight potential selective compounds to inhibit PfCytb-ISP protein (Qo active site) not only in the wild-type but also in the presence of the point mutations Y268C, Y268N and Y268S. The selective binding of these hit compounds could be linked to the differences reported at sequence/residue level in chapter 3. DRN and residue contact map analyses of the eight compounds in holo and ligand-bound systems revealed reduced residue interactions and decreased protein communication. This suggests that the eight compounds show the possibility of inhibiting the parasite and disrupting important residue-residue interactions. Additionally, 13 selective compounds were identified to bind at the protein’s heterodimer interface, where global and local analysis confirmed their effect on active site residues (distal location) as well as on the communication network. Based on the sequence differences between PfCytb and the human homolog, these findings suggest these selective compounds as potential allosteric modulators of the parasite enzyme, which may serve as possible replacements of the already resistant ATQ drug. Therefore, these findings pave the way for further in vitro studies to establish their anti-plasmodial inhibition levels. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Chebon, Lorna Jemosop
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium falciparum , Molecular dynamics , Antimalarials , Molecules Models , Docking , Cytochromes , Drug resistance , Computer simulation , Drugs Computer-aided design , System analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365666 , vital:65774 , DOI https://doi.org/10.21504/10962/365666
- Description: Malaria continues to be a burden globally with a myriad of challenges deterring eradication efforts. With most antimalarials facing drug resistance, such as atovaquone (ATQ), alternative compounds that can withstand resistance are warranted. The Plasmodium falciparum cytochrome b (PfCytb), a subunit of P. falciparum cytochrome bc1 complex, is a validated drug target. Structurally, cytochrome b, cytochrome c1, and iron sulphur protein (ISP) subunits form the catalytic domain of the protein complex having heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors. These cofactos have redox centres to aid in the electron transfer (ET) process. These subunits promote ET mainly through the enzyme’s ubiquinol oxidation (Qo) and ubiquinone reduction (Qi) processes in the catalytic domain. ATQ drug has been used in the prevention and treatment of uncomplicated malaria by targeting PfCytb protein. Once the mitochondrial transmembrane ET pathway is inhibited, it causes a collapse in its membrane potential. Previously reported ATQ drug resistance has been associated with the point mutations Y268C, Y268N and Y268S. Thus, in finding alternatives to the ATQ drug, this research aimed to: i) employ in silico approaches incorporating protein into phospholipid bilayer for the first time to understand the parasites’ resistance mechanism; ii) determine any sequence and structural differences that could be explored in drug design studies; and iii) screen for PfCytb-iron sulphur protein (Cytb-ISP) hit compounds from South African natural compound database (SANCDB) and Medicines for Malaria Venture (MMV) that can withstand the identified mutations. Using computational tools, comparative sequence and structural analyses were performed on the cytochrome b protein, where the ultimate focus was on P. falciparum cytochrome b and its human homolog. Through multiple sequence alignment, motif discovery and phylogeny, differences between P. falciparum and H. sapiens cytochrome b were identified. Protein modelling of both P. falciparum and H. sapiens cytochrome b - iron sulphur protein (PfCytb-ISP and HsCytb-ISP) was performed. Results showed that at the sequence level, there were few amino acid residue differences because the protein is highly conserved. Important to note is the four-residue deletion in Plasmodium spp. absent in the human homolog. Motif analysis discovered five unique motifs in P. falciparum cytochrome b protein which were mapped onto the predicted protein model. These motifs were not in regions of functional importance; hence their function is still unknown. At a structural level, the four-residue deletion was observed to alter the Qo substrate binding pocket as reported in previous studies and confirmed in this study. This deletion resulted in a 0.83 Å structural displacement. Also, there are currently no in silico studies that have performed experiments with P. falciparum cytochrome b protein incorporated into a phospholipid bilayer. Using 350 ns molecular dynamics (MD) simulations of the holo and ATQ-bound systems, the study highlighted the resistance mechanism of the parasite protein where the loss of active site residue-residue interactions was identified, all linked to the three mutations. The identified compromised interactions are likely to destabilise the protein’s function, specifically in the Qo substrate binding site. This showed the possible effect of mutations on ATQ drug activity, where all three mutations were reported to share a similar resistance mechanism. Thereafter, this research work utilised in silico approaches where both Qo active site and interface pocket were targeted by screening the South African natural compounds database (SANCDB) and Medicines for Malaria Venture (MMV) compounds to identify novel selective hits. SANCDB compounds are known for their structural complexity that preserves the potency of the drug molecule. Both SANCDB and MMV compounds have not been explored as inhibitors against the PfCytb drug target. Molecular docking, molecular dynamics (MD) simulations, principal component, and dynamic residue network (DRN; global and local) analyses were utilised to identify and confirm the potential selective inhibitors. Docking results identified compounds that bound selectively onto PfCytb-ISP with a binding energy ≤ -8.7 kcal/mol-1. Further, this work validated a total of eight potential selective compounds to inhibit PfCytb-ISP protein (Qo active site) not only in the wild-type but also in the presence of the point mutations Y268C, Y268N and Y268S. The selective binding of these hit compounds could be linked to the differences reported at sequence/residue level in chapter 3. DRN and residue contact map analyses of the eight compounds in holo and ligand-bound systems revealed reduced residue interactions and decreased protein communication. This suggests that the eight compounds show the possibility of inhibiting the parasite and disrupting important residue-residue interactions. Additionally, 13 selective compounds were identified to bind at the protein’s heterodimer interface, where global and local analysis confirmed their effect on active site residues (distal location) as well as on the communication network. Based on the sequence differences between PfCytb and the human homolog, these findings suggest these selective compounds as potential allosteric modulators of the parasite enzyme, which may serve as possible replacements of the already resistant ATQ drug. Therefore, these findings pave the way for further in vitro studies to establish their anti-plasmodial inhibition levels. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
Studies towards the development of novel antimalarial agents
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »